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We study the analyticity properties of the free energy fc(m) of the Kac model at
points of first order phase transition, in the van der Waals limit c s 0. We show
that there exists an inverse temperature b0 and c0 > 0 such that for all b \ b0

and for all c ¥ (0, c0), fc(m) has no analytic continuation along the path m s mg

(mg denotes spontaneous magnetization). The proof consists in studying high
order derivatives of the pressure pc(h), which is related to the free energy fc(m)
by a Legendre transform.

KEY WORDS: Non-analyticity; singularity at first order phase transition;
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1. INTRODUCTION

The first equation of state giving precise predictions on the liquid-vapor
equilibrium at low temperature was given by van der Waals: (22)

1p+
a
v2
2 (v − b)=RT. (1.1)

This equation follows from the hypothesis that the molecules interact via
(1) a short range hard core repulsion, due to the assumption that molecules
are extended in space, (2) an attractive potential, whose range is assumed
to be comparable to the size of the system. Nowadays, such an approxi-
mation is called a mean field approximation. As well known, there exists a
critical temperature Tc=Tc(a, b) such that for T < Tc,

“

“v p \ 0 for some
values of v, which implies thermodynamic instability. On physical and



Fig. 1. The equation of state modified by Maxwell and the analytic continuation at the
condensation point.

geometrical grounds, the graph of the pressure was modified by Maxwell
who replaced p(v), on a suitably chosen interval [vl, vg], by a flat horizon-
tal segment (the ‘‘equal area rule’’). The new function obtained, written
MC p(v), describes precisely what is observed in the laboratory: vl is called
the evaporation point and vg is the condensation point (see Fig. 1).

A particularity of this scenario is that MC p can be continued analyti-
cally along the paths v q vl and v s vg: the liquid and gas branches can be
joined analytically by a single function, which is nothing but the original
isotherm p given in (1.1). The pressure obtained by analytic continuation
was originally considered as the pressure of a meta-stable state (see Fig. 1).
For instance, the meta-stable state obtained by analytic continuation along
the path v s vg is called a super-saturated vapor.

Much later, Kac, Uhlenbeck, and Hemmer (13) showed how the
Maxwell construction could be rigorously justified for a one dimensional
model, from first principles of statistical mechanics, using a double limiting
process: if the range of interaction diverges after the thermodynamic limit,
then convexity is preserved and the free energy converges to the convex
envelope of mean field theory. Later this was generalized and extended to
higher dimensions by Lebowitz and Penrose. (16) From the point of view of
analyticity, these results imply, as in the theory of van der Waals, that the
free energy can be continued analytically across condensation/evaporation
points.

In the mean time, arguments were given, saying that when the range of
interaction is finite, the free energy might have some singularities that

666 Friedli and Pfister



forbid analytic continuation across the transition points. In refs. 7 and 14,
Fisher and Langer analyzed in details simple models to illustrate this phe-
nomenon, but it was not until the seminal work of Isakov (10) that this was
shown for the Ising model.

An important issue is thus to understand how the breakdown of
analyticity at a first order phase transition point relates to the range of
interaction. Since Kac potentials give a way of interpolating finite range
systems and mean field, it seems an interesting problem to study the
dependence on the scaling parameter c of the analyticity properties of
the Kac model at low temperature. The aim of this work is to show that for
the Kac–Ising ferromagnet on Zd (d \ 2) at low temperature, the free
energy has no analytic continuation at first order phase transition points as
long as the range of interaction is finite (c > 0). Analytic continuation occurs
only after the van der Waals limit (c s 0). This result answers a question
raised by Joel Lebowitz at a conference devoted to Kac potentials, Inho-
mogeneous Random Systems, held in Paris, January 2001.

In Section 1.1 we remind the main properties of the free energy for
mean field and Kac potentials in the case of Ising spins. In Section 1.2 we
state our main results and give the strategy of the proof.

1.1. Mean Field and Kac Potentials

We consider the lattice Zd, d \ 2, with a distance d(x, y)=||x − y||,
where

||x|| := max
i=1,..., d

|xi |. (1.2)

This distance will also be used for points of Rd. The letter L will always
denote a finite subset of Zd. At each site i ¥ Zd lives a spin si ¥ { ± 1}. The
configuration space is W={ ± 1}Zd

. For any set L, WL={ ± 1}L. Our nota-
tions are often inspired by those of Presutti. (19)

Mean Field

In a mean field model, the interactions ignore the spatial positions of
the spins, and the hamiltonian in a volume L containing N sites is (s ¥ WL)

HMF
L (s) := −

1
N

C
{i, j} … L

i ] j

sisj. (1.3)
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As is well known, the free energy can be easily computed. For m ¥

[ − 1, +1],

fMF(m)=−
1
2

m2 −
1
b

I(m), (1.4)

where

I(m) := −
1 − m

2
log

1 − m
2

−
1+m

2
log

1+m
2

. (1.5)

When b [ 1 fMF is strictly convex, but when b > 1, fMF has two minima at
± mg(b), where mg(b) is the positive solution of m=tanh(bm). bc :=1 is
the critical temperature of mean field theory. As in van der Waals theory,
fMF is non convex when b > bc, in contradiction with thermodynamic
stability.

Kac Potentials

Kac potentials are defined as follows. Consider J: Rd
Q R+ supported by

the cube {y ¥ Rd : ||y|| [ 1}=[ − 1, +1]d such that the overall strength
equals unity, i.e.,

F
R

d
J(x) dx=1. (1.6)

Let c ¥ (0, 1) be the scaling parameter. Define Jc: Zd
Q R+ as follows:

Jc(x) :=ccc
dJ(cx), (1.7)

where cc is defined so that

C
x ] 0

Jc(x)=1. (1.8)

It is easy to see that (1.6) implies lim c s 0 cc=1. Since Jc(x)=0 if ||x|| > c−1,
we call R :=c−1 the range of the interaction.

Convention. Unless stated explicitly, R will always denote the range
of interaction, i.e., c−1. For simplicity, we will usually omit c from the
notations of the quantities that will appear in the sequel (hamiltonian,
partition function).
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For a finite L, s ¥ WL, the Kac hamiltonian is defined by

Hh
L(s)=− C

{i, j} … L
i ] j

Jc(i − j) sisj − h C
i ¥ L

si, (1.9)

where h ¥ R is the magnetic field. The magnetization in L is

mL(s)=
1

|L|
C

i ¥ L

si, (1.10)

and takes values in a set qL … [ − 1, +1]. The canonical partition func-
tion is defined by (b > 0 is the inverse temperature, m ¥ qL):

Z(L, m)= C
sL ¥ WL:

mL(s)=m

exp( − bH0
L(sL)). (1.11)

The free energy density is, for m ¥ [ − 1, +1],

fc(m)=− lim
L q Zd

1
b |L|

log Z(L, m(L)), (1.12)

where the thermodynamic limit L q Zd is along a sequence of cubes, and
the sequence m(L) is such that m(L) Q m. The function fc exists and is
convex. The Theorem of Lebowitz–Penrose (16) gives a closed form for the
free energy in the van der Waals limit c s 0. For a function f(x), let
CE f(x) denote its convex envelope.

Theorem 1.1. [Ref. 16]. For any b > 0, m ¥ [ − 1, +1],

f0(m) :=lim
c s 0

fc(m)=CE fMF(m). (1.13)

When b > 1, the graph of f0(m) is thus horizontal between − mg(b)
and +mg(b), giving a rigorous justification of the Maxwell construction
(see Fig. 2).

Fig. 2. The free energy f0(m) when b > 1. The dotted line is the analytic continuation
provided by fMF(m).
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From the point of view of analyticity, we have

Corollary 1.1. When b > 1, f0 is analytic everywhere except at
± mg(b), and has analytic continuations along the (real) paths m q − mg(b),
m s +mg(b). The unique analytic continuation is given by the mean field
free energy fMF.

That is: after the van der Waals limit, all the analyticity properties of
the free energy are known explicitly. There exists no formula for fc when
c > 0, and it was not shown, until the papers of Cassandro and Presutti (5)

and Bovier and Zahradnı́k, (3) that the system exhibits a first order phase
transition before reaching the mean field regime: for all b > 1, the graph of
fc(m) already has a plateau [ − mg(b, c), +mg(b, c)] when c is small
enough. In this sense, one can say that mean field, together with the
Maxwell construction, is a good approximation to long but finite range
interactions (and vice versa). Our purpose is to show that from the point of
view of analyticity, the situation is very different.

1.2. Obstruction for c > 0; Main Results

Our results hold for Kac potentials for which Lemmas 2.1 and 2.8
hold, but we believe them to be true for any ferromagnetic potential
satisfying (1.6). For the sake of simplicity, we focus on a particular poten-
tial, i.e., on the step function

J(x) :=2−d1||x|| [ 1(x). (1.14)

In this setting, our main result for the free energy density is the following:

Theorem 1.2. There exists b0 and c0 > 0 such that for all b \ b0,
c ¥ (0, c0), fc is analytic everywhere except at ± mg(b, c), but has no ana-
lytic continuation along the paths m q − mg(b, c), m s +mg(b, c).

This result is in favor of the original ideas of Fisher and Langer,
saying that finiteness of the range of interaction is responsible for absence of
analytic continuation. In particular it excludes the possibility of obtaining
the free energy by a Maxwell construction: when c > 0 the phases + and −
cannot be joined analytically.

The proof of Theorem 1.2 will be done by working in the more
appropriate grand canonical ensemble (in the lattice gas terminology), in
which the constraint on the magnetization is replaced by a magnetic field.
Let

Z(L)= C
s ¥ WL

exp( − bHh
L(s)). (1.15)

670 Friedli and Pfister



Define the pressure density by

pc(h) := lim
L q Zd

pc, L(h), where pc, L(h)=
1

b |L|
log Z(L). (1.16)

The free energy and pressure densities are related by a Legendre transform:

fc(m)=sup
h ¥ R

(hm − pc(h)). (1.17)

See for instance ref. 19 for a proof of this property. The analytic properties
of fc at ± mg(b, c) will be obtained from those of pc at h=0. By the
Theorem of Yang and Lee, (17) pc is analytic outside the imaginary axis. The
main result of the paper is the following characterization of the analyticity
properties of the pressure at h=0.

Theorem 1.3. There exists b0, c0 > 0 and a constant Cr > 0 such
that for all b \ b0, c ¥ (0, c0), the following holds:

(1) The directional derivatives p (k), P

c (0) exist for all k ¥ N, i.e., pc is
C. at h=0. Moreover, there exists a constant C+ > 0 such that for all
k ¥ N,

sup
0 [ Re h [ E

|p (k), P

c (h)| [ (C+c
d

d − 1b− 1
d − 1)k k!

d
d − 1+Ck

r k!. (1.18)

(2) The pressure has no analytic continuation at h=0. More preci-
sely, there exists C− > 0 and an unbounded increasing sequence of integers
k1, k2,... such that for all k ¥ {k1, k2,...},

|p (k), P

c (0)| \ (C− c
d

d − 1b− 1
d − 1)k k!

d
d − 1 − Ck

r k!. (1.19)

The lower bound (1.19) becomes irrelevant when c s 0. Moreover,
we should mention that each integer ki depends on c and b, with
limc s 0ki=+.: information about non-analyticity is lost in the van der
Waals limit. Since we know from the Lebowitz–Penrose Theorem that pc

converges, when c s 0, to a function that is is analytic at h=0, it is
worthwhile considering the low order derivatives of pc. Considering the
upper bound (1.18), it easy to show the

Corollary 1.2. There exists C=C(b) such that for small values of
k, i.e., for k [ c−d, we have the upper bound

sup
0 [ Re h [ E

|p (k), P

c (h)| [ Ckk!. (1.20)

Non-Analyticity and the van der Waals Limit 671



Fig. 3. The derivatives of the pressure at h=0, when c > 0. The first ones (k [ c−d) behave
like those of an analytic function, but non-analyticity always dominates for large k.

This shows that a close inspection of the derivatives of the pressure
allows to detect how analyticity starts to manifest when c approaches 0.
These different behaviours are illustrated on Fig. 3.

To show Theorem 1.3, we first construct the phase diagram of the Kac
model with a complex magnetic field, at low temperatures, c small. Then,
we adapt the technique of Isakov to obtain lower bounds on the derivatives
of the pressure in a finite volume. These two essential steps deserve a few
comments.

1. Phase diagrams of lattice systems can be studied in the general
framework of Pirogov–Sinai Theory (refs. 20 and 23), which applies when
the system under consideration has a finite number of ground states, and
for which the unperturbed hamiltonian satisfies the Peierls condition. In
our case, the Kac potential has two ground states which are the pure +
and pure − configurations, but the Peierls constant (computed with respect
to these two ground states) goes to zero when c s 0 since in the van der
Waals limit, the interaction between two arbitrary spins vanishes. There-
fore, a direct application of Pirogov–Sinai Theory would lead to a range of
temperature shrinking to zero in the van der Waals limit.

We will use a technique useful for the study of spin systems with long
but finite range interactions, invented recently by Bovier and Zahradnı́k. (4)

Their technique allows to study, for instance, the Kac model with a mag-
netic field, in a range of temperature that is uniform in c. In their approach,
the ground states of Pirogov–Sinai Theory are replaced by restricted
phases, i.e., by sets of configurations. In the +-restricted phase, for
example, all the points are +-correct, i.e., their c−1-neighbourhood con-
tains a majority of spins +. When a point is in neither of the restricted
phases, it is in the support of a contour C, and it can then be shown that
the contours defined in this way satisfy the Peierls condition with a Peierls
constant r that is uniform in c: ||C|| \ r |C| where ||C|| is the surface energy
of C. In Section 3 we show that a polymer representation can be obtained
for the restricted phases, and that their corresponding free energies behave
analytically at h=0. The full phase diagram is then completed in Section 4:

672 Friedli and Pfister



we give precise domains in which the partition function can be exponen-
tiated. These domains are made optimal by introducing special isoperime-
tric constants associated to contours (see the discussion hereafter, and
(2.44)). Complications arise from the fact that polymers of the restricted
phases induce interactions among contours. Besides the definition of the
restricted ensembles, our analysis of the phase diagram is independent of
the paper. (4) In a different setting, restricted ensembles were also studied in
refs. 1, 2, 6, and 15.

2. To implement the mechanism used by Isakov, we consider the
pressure p+

c, L in a finite box L, with a pure +-boundary condition. By
introducing an order among the contours inside L, the pressure can be
written as a finite sum:

p+
c, L=

1
b |L|

log Z+
r (L)+

1
b |L|

C
C ¥ C

+(L)

u+
L (C), (1.21)

where Z+
r (L) is the restricted partition function and C+(L) is the family of

all contours of type + in L. With the analysis of Sections 3 and 4, the
derivatives of the functions u+

L (C) can be estimated using a stationary
phase analysis. When L is sufficiently large, the contributions to p+(k)

c, L (0)
are the following: since it is analytic, the restricted phase contributes a
factor Ck

r k!. Then, a class of contours called k-large gives a contribution of
order k!

d
d − 1. The rest of the contours is shown to have a negligible contri-

bution in comparison of the k-large ones. This gives a lower bound

|p+(k)
c, L (0)| \ (C− c

d
d − 1b− 1

d − 1)k k!
d

d − 1 − Ck
r k!. (1.22)

In the last step of the proof we show that limL p+, (k)
c, L (0)=p(k), P

c (0), and so
(1.22) extends to the thermodynamic limit L q Zd, which gives (1.19).

Before going further, we make an important remark. In ref. 10, Isakov
proved Theorem 1.3 for the Ising model. An attempt was then made, in a
second paper, (11) to extend the method to any two phase model for which
the Peierls condition holds. Unfortunately, this extension could only be
done under two additional assumptions which we briefly describe. Asso-
ciate to each phase a discrete isoperimetric problem of the following type:
let V(C) denote the volume of the contour C (of a given type) and ||C|| its
surface energy. For N ¥ N, consider the problem:

P(N) ˛Find the best constant C(N) such that
V(C)
||C||

[ C(N) V(C)
1
d

for all contours C with V(C) [ N.
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The assumptions of Isakov are then that in the limit N Q ., (1) the
asymptotic behaviour of the constant C(N) is the same for the two phases,
(2) there exist maximizers of arbitrary large size.

Clearly, these assumptions are satisfied by the Ising model, for which
||C||=|C| (the number of dual bonds on the dual lattice) and the maxi-
mizers are always given by cubes, i.e., C(N)=(2d)−1 for all N. But for a
model with no symmetry or with interactions that are more complicated
than nearest neighbours, these assumptions can be very hard to check. The
problem comes from the fact that the surface energy ||C|| depends on the
detailed structure of the hamiltonian. In our case, symmetry reduces the
difficulty to the existence of large maximizers. We will see that the con-
struction of the phase diagram can be done when the isoperimetric problem
is formulated as follows:

PŒ(N) ˛Find the best constant K(N) such that
V(C)
||C||

[ K(N) V(C)
1
d

for all contours C with V(C) \ N.

By formulating the problem in this way, the existence of large maximizers
is immediate, and we avoid the necessity of solving the isoperimetric
problem explicitly.

It was actually shown in ref. 8 that the two assumptions of Isakov can
be swept out, and that the result of ref. 11 can be extended to the whole
class of two phase models treated generally in Pirogov–Sinai theory, the
only necessary ingredient for non-analyticity being the Peierls condition.
The general theorem of ref. 8 applies to the Kac model but with some
restriction b \ b0(c) where b0(c) diverges when c s 0. In the present paper
we study the van der Waals limit at fixed b.

The description of the model in terms of contours and the verification
of the Peierls condition for ||C|| will be done in Section 2. Section 3 is
entirely devoted to the study of restricted phases and to their analyticity
properties, adapting the technique of ref. 4. Section 4 is the construction of
the phase diagram in the complex plane of the magnetic field. Section 5
contains the proofs of our main results, and Appendix 1 contains basic
definitions for the cluster expansion technique.

Conventions. We will often use the norm ||f||D :=supz ¥ D |f(z)|. When
G is a graph we denote by V(G) its set of vertices and by E(G) its set of edges.

2. CONTOUR DESCRIPTION

For the description of configurations in terms of contours, we use the
notion of correct/incorrect point introduced by Bovier and Zahradnı́k
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in ref. 4. There are two major requirements for the way in which contours
should be defined.

1. They are defined on a coarse-grained scale, and a Peierls condition
must hold for the surface energy of each contour, with a Peierls constant
that is uniform in c. See Proposition 2.2.

2. Outside contours, a partial re-summation over configurations will
lead to restricted phases. To obtain convergent expansions for these phases,
care must be taken in the definition of contours. See the parameter d̃ in
(2.16).

Remark. In the study of Kac potentials, one finds in the literature
another definition of contour. For instance in refs. 5 and 3, contours are
defined by comparing the local (empirical) magnetization to the mean field
spontaneous magnetization ± mg(b). This allows to study the system very
close to the critical temperature, by using explicitly the mean field func-
tionals. Unfortunately, this technique hasn’t yet been extended to the study
of the Kac model with a magnetic field. In our case, the local magnetiza-
tion is always compared with ± 1 (rather than ± mg(b)), and we must there-
fore work at low temperature, not reaching the whole coexistence regime.
Moreover,weneedto introduceacomplexmagnetic field,whichdefinitelyrules
out the possibility of using the standard techniques existing for Kac models.

2.1. Definition of Contours

We introduce some more notations. We have d(x, L)=inf{d(x, y):
y ¥ L}. For N \ 1, define the box BN(x) :={y ¥ Zd : d(x, y) [ N}, and
B •

N(x) :=BN(x)0{x}. The N-neighbourhood of L is

[L]N := 0
x ¥ L

BN(x), (2.1)

and the boundaries

“
+
NL={x ¥ Lc : d(x, L) [ N}, (2.2)

“
−
NL={x ¥ L : d(x, Lc) [ N}. (2.3)

A set L is N-connected if for all x, y ¥ L there exists a sequence x1, x2,...,
xn − 1, xn with x1=x, xn=y, xi ¥ L, and d(xi, xi+1) [ N. If sL ¥ WL,
gL

c ¥ WL
c, we define the concatenation sLgL

c ¥ W in the usual way:

(sLgL
c)i=˛ (sL)i if i ¥ L,

(gL
c)i if i ¥ Lc.

(2.4)
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We often use the symbol # to denote either of the symbols + or − , or the
constant configuration taking the value # at each site of Zd. We define

fij(si, sj) := − 1
2 Jc(i − j)(sisj − 1), (2.5)

Let fij :=fij(+, −). The overall interaction strength is the upper bound
on the energy of interaction of a single spin with the rest of the system, and
equals

C
j: j ] i

fij= C
j: j ] i

Jc(i − j)=1. (2.6)

Relevant functions for the study of nearly constant spin regions are the
following (they will appear naturally later when reformulating the hamil-
tonian):

w#
ij(si, sj) :=fij(si, sj) − fij(#, sj) − fij(si, #). (2.7)

Notice that w#
ij(#, sj)=w#

ij(si, #)=0. Let d ¥ (0, 1), s ¥ W. With regard to
the step function J defined in (1.14), we define a point i to be (d, +)-
correct for s if

|B •
R(i) 5 {j: sj=−1}| [

d

2
|BR(i)|. (2.8)

That is, the R-neighbourhood of a (d, +)-correct point contains a majority
of + spins. Although we will always consider the step function, it is often
easier to formulate proofs with the help of the functions w#

ij, since they will
appear naturally later in the re-formulation of the hamiltonian. We thus
define the notion of correct/incorrect point in the general case.

Definition 2.1. Let d ¥ (0, 1), s ¥ W, i ¥ Zd.

1. i is (d, +)-correct for s if ; j: j ] i |w+
ij (−, sj)| [ d.

2. i is (d, −)-correct for s if ; j: j ] i |w−
ij (+, sj)| [ d.

3. i is d-correct for s if it is either (d, +)- or (d, −)-correct for s.

4. i is d-incorrect for s if it is not d-correct.

It is easy to see that this definition coincides with (2.8) when J is the step
function.

The notion of correctness for a point i depends on the spins in the
R-neighbourhood of i but neither on the value of si, nor on the magnetic
field. Notice that if d=0 this notion of correct point essentially coincides
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with the one of Zahradnı́k in ref. 23. We first show that when d is small,
regions of (d, +)- and (d, −)-correct points are distant. In particular, a
point i cannot be at the same time (d, +)- and (d, −)-correct.

Lemma 2.1. Let d ¥ (0, 2−d), s ¥ W. Then

(1) If i is (d, +)-correct, the box BR(i) contains either (d, +)-correct,
or d-incorrect points (but no (d, −)-correct points).

(2) If i is (d, −)-correct, the box BR(i) contains either (d, −)-correct,
or d-incorrect points (but no (d, +)-correct points).

Proof. Suppose i is (d, +)-correct for s. Consider j ¥ BR(i) and
compute

C
k: k ] j

|w−
jk(+, sk)|= C

k ¥ B •
R(j)

sk=+1

2fjk \ C
k ¥ B •

R(j) 5 B •
R(i)

sk=+1

2fjk. (2.9)

Using the properties of the function J( · ),3 we can exchange j and i and

3 At this point we use the particularity of the step function: fjk is constant on the intersection
B •

R(j) 5 B •
R(i).

write

C
k ¥ B •

R(j) 5 B •
R(i)

sk=+1

2fjk= C
k ¥ B •

R(j) 5 B •
R(i)

sk=+1

2fik= C
k ] i

sk=+1

2fik − C
k ¨ B •

R(j) 5 B •
R(i)

sk=+1

2fik (2.10)

Using (2.6) and |BR(j) 5 BR(i)| \ 2−d |BR(i)|, this last sum can be bounded
by

C
k ¨ B •

R(j) 5 B •
R(i)

sk=+1

fik [
2d − 1

2d . (2.11)

Then, since i is (d, +)-correct for s,

C
k ] i

sk=+1

2fik=2 − C
k ] i

sk=−1

2fik=2 − C
k: k ] i

|w+
ik(−, sk)| \ 2 − d. (2.12)

We thus have the lower bound

C
k: k ] j

|w−
jk(+, sk)| \ 2 − d − 2

2d − 1
2d > d, (2.13)

i.e., j cannot be (d, −)-correct for s, which finishes the proof. L

Non-Analyticity and the van der Waals Limit 677



In the sequel we will always assume that d ¥ (0, 2−d) is fixed. The
cleaned configuration s̄ ¥ W is defined as follows:

s̄i :=˛+1 if i is (d, +)-correct for s,
− 1 if i is (d, −)-correct for s,
si if i is d-incorrect for s.

(2.14)

For any set M … Zd, we can always consider the partial cleaning sMs̄Mc

which coincides with s on M and with s̄ on Mc. In the sequel, the cleaning
and partial cleaning are always done according to the original configura-
tion s, with a fixed d. Notice that if a point i is, say, (d, +)-correct for s,
then the cleaning of s has the only effect, in the box BR(i), of changing −
spins into + spins (and not + spins into − spins). This is a consequence
of Lemma 2.1. We denote by Id(s) the set of d-incorrect points of the con-
figuration s. The important property of the cleaning operation is stated in
the following lemma.

Lemma 2.2. Let M1 … M2, dŒ ¥ (0, d]. Then IdŒ(sM1
s̄Mc

1
) … IdŒ(sM2

s̄Mc
2
).

Proof. Let i be a (dŒ, +)-correct point of sM2
s̄Mc

2
. Using the fact that

sM1
s̄Mc

1
and sM2

s̄Mc
2

coincide on M1 and Mc
2, we decompose

C
k: k ] i

|w+
ik(−, (sM1

s̄Mc
1
)k)|

= C
k: k ] i

k ¥ M1 2 Mc
2

|w+
ik(−, (sM2

s̄Mc
2
)k)|+ C

k: k ] i
k ¥ M2 0M1

|w+
ik(−, s̄k)|.

There are at most three possibilities for a point k of the last sum. (1) If k is
(d, +)-correct for s then s̄k=+1 and so |w+

ik(−, s̄k)|=0. (2) If k is
d-incorrect for s then s̄k=sk=(sM2

s̄Mc
2
)k. (3) If k is (d, −)-correct for s

then it is also (d, −)-correct for sM2
s̄Mc

2
. By Lemma 2.1, i is not

(d, +)-correct for sM2
s̄Mc

2
. This is a contradiction with the fact that i is

(dŒ, +)-correct for sM2
s̄Mc

2
, so there are no such k.

We can then bound the whole sum by dŒ. This shows that i is
(dŒ, +)-correct for sM1

s̄Mc
1
, and finishes the proof. L

Contours are defined on a coarse-grained scale. Consider the partition
of Zd into disjoint cubes C (l) of side length l ¥ N, l > 2R, whose centers lie
on the sites of a square sub-lattice of Zd. We denote by C (l)

i the unique box
of this partition containing the site i ¥ Zd. C (l) will denote the family of all
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subsets of Zd that are unions of boxes C (l). For any set A … Zd, consider
the thickening (compare with (2.1))

{A}l :=0
i ¥ A

C (l)
i . (2.15)

In the sequel we always consider l such that l=nR, with n > 2.
We will need to decouple contours from the rest of the system. Since

interactions are of arbitrary large finite range, we follow ref. 4 and intro-
duce a second parameter d̃ ¥ (0, d). This new parameter is crucial; its
importance will be seen later, for instance in the proof of the analyticity of
the restricted phases. For each s ¥ W with |Id̃(s)| < ., consider the follow-
ing set:

E(s) :={M ¥ C (l) : M ‡ [Id(s)]R, M ‡ [Id̃(sMs̄Mc)]R}. (2.16)

First we show that E(s) is not empty. Consider M0 :={[Id̃(s)]R}l. If
M0=” then Id̃(s)=Id(s)=” and any subset of Zd is in E(s). So we
assume M0 ] ”. This gives E(s) ] ” since M0 ¥ C (l), M0 ‡ [Id̃(s)]R ‡

[Id(s)]R and M0 ‡ [Id̃(s)]R ‡ [Id̃(sM0
s̄Mc

0
)]R by Lemma 2.2. We then

show that E(s) is stable by intersection. Suppose A, B ¥ E(s). Then clearly
A 5 B ‡ [Id(s)]R and using again Lemma 2.2,

A ‡ [Id̃(sAs̄Ac)]R ‡ [Id̃(sA 5 Bs̄(A 5 B)c)]R, (2.17)

B ‡ [Id̃(sBs̄Bc)]R ‡ [Id̃(sA 5 Bs̄(A 5 B)c)]R, (2.18)

which implies A 5 B ¥ E(s). The following set is thus well defined, and is
the candidate for describing the contours of the configuration s:

Ig(s) := 3
M ¥ E(s)

M. (2.19)

By construction, Ig(s) is the smallest element of E(s). A first important
property of Ig(s) is the following, which will be essential to obtain the
Peierls bound on the surface energy of contours.

Lemma 2.3. There exists, in the 2R-neighbourhood of each box
C (l) … Ig(s), a point j ¥ Ig(s) which is d̃-incorrect for the configuration
sIgs̄Igc.

Proof. Let C (l) … Ig(s). First, suppose Id(s) 5 [C (l)]2R ] ”. Then
each j ¥ Id(s) 5 [C (l)]2R is d-incorrect for s, and hence d̃-incorrect for
sIgs̄Igc, since d̃ < d and s and sIgs̄Igc coincide on BR(j).
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Suppose there exists a box C (l) such that4 [Id(s)]R 5 [C(l)]R=”. If

4 Here we use the fact that A 5 [B]2R=” if and only if [A]R 5 [B]R=”.

Id̃(sIgs̄Igc) 5 [C (l)]2R=”, i.e., [Id̃(sIgs̄Igc)]R 5 [C (l)]R=”, then we define
IŒ :=Ig 0C (l) and show that IŒ ¥ E(s), a contradiction with the definition of Ig.
First, IŒ ‡ [Id(s)]R. Using Lemma 2.2, Ig ‡ [Id̃(sIgs̄Igc)]R ‡ [Id̃(sIŒs̄IŒ

c)]R.
Since we have [Id̃(sIgs̄Igc)]R 5 [C (l)]R=”, this implies IŒ ‡ [Id̃(sIŒs̄IŒ

c)]R,
i.e., IŒ ¥ E(s). L

When studying restricted phases, we will need to re-sum over the set of
configurations that have the same set of contours, that is to consider, for a
fixed s (we assume Ig(s) ] ”),

A(s) :={sŒ: s −

Ig(s)=sIg(s), Ig(sŒ)=Ig(s)}. (2.20)

It is important to have an explicit characterization of the set A(s). Let
L#(s) denote the set of points of Ig(s)c that are (d, #)-correct for s. By
Lemma 2.1 we have d(L+(s), L−(s)) > l, and we have the partition

Zd=Ig(s) 2 L+(s) 2 L−(s). (2.21)

We now show that the set A(s) can be characterized explicitly by

D(s) :={sŒ: s −

Ig(s)=sIg(s), each i ¥ [L#(s)]R is (d, #)-correct for sŒ}.

Proposition 2.1. If Ig(s) ] ”, then A(s)=D(s).

Proof.

(1) Assume sŒ ¥ A(s). Then Ig — Ig(s)=Ig(sŒ) ‡ [Id(sŒ)]R, so that
each i ¥ [Igc]R is d-correct for sŒ. Let A be a maximal connected compo-
nent of [Igc]R. There exists i ¥ A such that i ¥ Ig, since we assumed Ig ] ”.
By Lemma 2.1, it suffices to show that i is (d, +)-correct for s if and only
if it is (d, +)-correct for sŒ. Assume this is not the case, e.g. suppose i is
(d, +)-correct for s and (d, −)-correct for sŒ. That is,

C
j ] i

|w+
ij (−, (sIgs̄Igc)j)|= C

j ¥ B •
R(i) 5 Ig

|w+
ij (−, sj)| [ d̃, (2.22)

C
j ] i

|w−
ij (+, (s −

Igs̄ −

Igc)j)|= C
j ¥ B •

R(i) 5 Ig
|w−

ij (+, sj)| [ d̃. (2.23)
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Since i ¥ Ig we have5

5 Here we use a property of the step function, but this can be done for any Kac potential
whose function J has the symmetry J(x)=J(y) when ||x||=||y||.

C
j ¥ B •

R(i) 5 Igc
|w−

ij (+, (sIgs̄Igc)j)| [ C
j ¥ B •

R(i) 5 Igc
|w−

ij (+, +)| [ 2(1 − 2−d).

Therefore we get a contradiction, since,

2=C
j ] i

|w+
ij (−, (sIgs̄Igc)j)|+|w−

ij (+, (sIgs̄Igc)j)|

[ 2d̃+2 C
j ¥ B •

R(i) 5 Igc
|w−

ij (+, (sIgs̄Igc)j)| [ 2d̃+2(1 − 2−d) < 2, (2.24)

where we used the fact that d̃ < d < 2−d.

(2) Suppose sŒ ¥ D(s). Since sŒ coincides with s on Ig(s) and all
points of [Ig(s)c]R are d-correct for sŒ, we have Id(sŒ)=Id(s). This gives
Ig(s) ‡ [Id(s)]R=[Id(sŒ)]R. Then, since sIg(s)s̄Ig(s)c=sŒIg(s)s̄ŒIg(s)c, we
have Ig(s) ‡ [Id̃(sIg(s)s̄Ig(s)c)]R=[Id̃(sŒIg(s)s̄ŒIg(s)c)]R. This implies Ig(s) ¥

E(sŒ), i.e., Ig(sŒ) … Ig(s). Assume Ig(s)0Ig(sŒ) ] ”. Using the fact that s

and sŒ coincide on Ig(s)0Ig(sŒ), we have sIg(sŒ)s̄Ig(sŒ)c=s −

Ig(sŒ)s̄
−

Ig(sŒ)c. This
gives, like before, Ig(sŒ) ‡ [Id̃(sŒIg(sŒ)s̄ŒIg(sŒ)c)]R=[Id̃(sIg(sŒ)s̄Ig(sŒ)c)]R. With
Ig(sŒ) ‡ [Id(sŒ)]R=[Id(s)]R, this implies Ig(sŒ) ¥ E(s), i.e., Ig(sŒ) ‡ Ig(s).
So sŒ ¥ A(s). L

In particular, Proposition 2.1 implies that sIg(s)s̄Ig(s)c is an element of
A(s).

Definition 2.2. The connected components of Ig(s) form the
support of the contours of the configuration s, and are written
supp C1,..., supp Cn. A contour is thus a couple C=(supp C, sC), where
sC is the restriction of s to C.

A family of contours {C1,..., Cn} is admissible if there exists a con-
figuration s such that {C1,..., Cn} are the contours of s.6

6 Note that the configuration s is not unique, unlike in the usual situation treated in
Pirogov–Sinai Theory.

The fact that the contours are defined on a coarse-grained scale will be
crucial when dealing with their entropy, which we must control uniformly
in c. Notice that two (distinct) contours are at distance at least l from each
other. We will usually denote supp C also by C. Contours should always be
considered together with their type and labels, which we are about to
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define. The following topological property is needed for the definition of
labels.

Lemma 2.4. Fix R \ 1. Let B … Zd be R-connected and bounded.
Then “

+
R A and “

−
R A are R-connected, where A is any maximal R-connected

component of Bc=Zd 0B.

Proof. Let A be any maximal R-connected component of Bc. Then
Ac is R-connected. Indeed, let x, y ¥ Ac, and consider a path x1=
x, x2,..., xn=y, d(xi, xi+1) [ R. If xi ¥ Ac for all i there is nothing to show.
So suppose there exists 1 [ i− [ i+ [ n such that {x1,..., xi− −1, xi−

} … Ac,
xi− +1 ¥ A, xi+ − 1 ¥ A, {xi+

, xi++1,..., xn} … Ac. Since A is maximal, we have
xi−

¥ B, xi+
¥ B, and we can find a path from xi−

to xi+
entirely contained

in B, i.e., in Ac.
We then show that “

+
1 A is R-connected. Fix E > 0 and consider the sets

X=3x ¥ Rd : d(x, A) [
R
2

+E4 , (2.25)

Y=3y ¥ Rd : d(y, Ac) [
R
2

+E4 . (2.26)

Then X, Y are closed arc-wise connected subsets of Rd, and X 2 Y=Rd.
By a Theorem of Kuratowski, X 5 Y is arc-wise connected.7 Let EŒ > 0

7 This property of Rd is called unicoherence. See ref. 12, Vol. 2, Theorem 9 of Chapter 57.I,
and Theorem 2 of Chapter 57.II.

and consider x, y ¥ “
+
1 A, together with x̃, ỹ ¥ X 5 Y such that d(x, x̃) < 1

2 ,
d(y, ỹ) < 1

2 . Then consider any sequence x̃1=x̃,..., x̃n=ỹ, x̃i ¥ X 5 Y,
d(x̃i, x̃i+1) [ EŒ. For each i we have d(x̃i, A) [ R

2+E, d(x̃i, Ac) [ R
2+E. This

implies that each box BR
2+E(x̃i) contains at least one element x −

i ¥ “
+
1 A, i.e.,

d(x̃i, x −

i) [ R
2+E. We have

d(x −

i, x −

i+1) [ d(x −

i, x̃i)+d(x̃i, x̃i+1)+d(x̃i+1, x −

i+1) [ R+2E+EŒ. (2.27)

If 2E+EŒ < 1
2 , this shows that “

+
1 A is R-connected, which implies that “

+
R A is

R-connected. The same proof holds when “
+
R A is replaced by “

−
R A. L

Let C be a contour of s, A a maximal R-connected component of
(supp C)c. Let i ¥ “

−
R A. By definition, i is (d, #)-correct for s for some

# ¥ { ± 1}. By Lemmas 2.4 and 2.1, each iŒ ¥ “
−
R A is (d, #)-correct for s for

the same value #. We call # the label of the component A. There exists a
unique unbounded component of Cc. The label of this component is called
the type of the contour C. Let C be of type + (resp. − ). The union of all
components of Cc with label − (resp. +) is called the interior of C, and is
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denoted int C. Notice that there is only one type of interior. We define
V(C) :=|int C|. The union of the remaining components is called the
exterior of C, and is denoted by ext C. A contour is external if it is not
contained in the interior of another contour.

Let C be a contour of some configuration s. Assume C is of type +.
Consider the configuration s[C], which coincides with sC on the support
of C, and which equals +1 on ext C, − 1 on int C. Using Proposition 2.1,
it is easy to see that s[C] has a single contour, which is exactly C. This can
be generalized to a family of external contours of the same type, as in the
second part of the following lemma.

Lemma 2.5. External contours have the following properties:
(1) External contours of an admissible family have the same type.
(2) Let {C1,..., Cn} be a family of external contours, all of the same

type. Then {C1,..., Cn} is admissible if and only if d(Ci, Cj) > l for all i ] j.

Proof. The first statement follows easily from Lemma 2.4. For the
second, we can assume that the contours are of type +. If {C1,..., Cn} is
admissible, then by construction the Ci are at distance at least l. Then,
assume d(Ci, Cj) > l for all i ] j. Consider the configuration s[C1,..., Cn],
which coincides with sCi

on the support of Ci, which equals +1 on
4i ext Ci and − 1 on 1i int Ci. Then the contours of s[C1,..., Cn] are given
by {C1,..., Cn}. L

2.2. Re-Formulation of the Hamiltonian

Consider a finite volume L ¥ C (l) with the pure +-boundary condition
+L

c ¥ WL
c. Let sL ¥ WL. We set s :=sL+L

c. The hamiltonian with
boundary condition +L

c is defined by

HL(s)=HL(sL+L
c)= C

{i, j} 5 L ] ”

i ] j

fij(si, sj)+ C
i ¥ L

u(si), (2.28)

where u(si)=−hsi, h ¥ R. Since we work in a finite volume, we will from
now on identify Ig(s) with Ig(s) 5 L and L ±(s) with L ±(s) 5 L. The
following lemma shows how the hamiltonian can be written in such a way
that spins in correct regions interact via the functions w#

ij and are subject to
an effective external field U#.

Lemma 2.6. Define the potential U#(si) :=u(si)+; j: j ] i fij(si, #).
Suppose sL is such that Ig(s) 5 “

−
R L=”. Then

HL(s)=HIg(sIgs̄Igc)+C
#

1 C
{i, j} 5 L

#
] ”

i ] j

w#
ij(si, sj)+ C

i ¥ L
#

U#(si)2 . (2.29)

Non-Analyticity and the van der Waals Limit 683



Proof. The proof is a simple rearrangement of the terms. Consider a
pair {i, j} appearing in HL(s). Since d(L+, L−) > R we have a certain
number of cases to consider: (1) {i, j} … L+. In this case, write

fij(si, sj)=w+
ij (si, sj)+fij(si, +)+fij(+, sj). (2.30)

The second term contributes to U+(si), the third to U+(sj). (2) i ¥ L+,
j ¥ Ig. In this case the third term contributes to HIg(sIgs̄Igc). (3) i ¥ L+,
j ¥ Lc; in this case, fij(+, sj)=0. The other cases are similar. Notice that
the case i ¥ L−, j ¥ Lc never occurs since points of “

−
R L can only be

(d, +)-correct. L

2.3. Peierls Condition and Isoperimetric Constants

We take a closer look at the term HIg. Remember that contours are
maximal R-connected components of Ig. For each contour C, s[C] and
sIgs̄Igc coincide on [Ig]R. Since d(C, CŒ) > l, we can decompose

HIg(sIgs̄Igc)=C
C

HC(s[C]) (2.31)

=C
C

1 ||C||+ C
i ¥ C

u(s[C]i)2 , (2.32)

where the sum is over contours of the configuration s (contained in L), and
where the surface energy is defined as

||C|| := C
{i, j} 5 C ] ”

i ] j

fij(s[C]i, s[C]j). (2.33)

The central result of this section is the following.

Proposition 2.2. The surface energy satisfies the Peierls condition,
i.e., there exists r=r(d̃, n) > 0 such that for all contour C,

||C|| \ r |C|. (2.34)

The constant r is independent of c and is called the Peierls constant.

Remark. |C| denotes the total number of lattice sites contained in
the support of C; in the literature, it often denotes the number of blocks
C (l) contained in C. In the latter case, the Peierls condition becomes
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||C|| \ rŒc−d |C| (with a different constant rŒ), and bc−d is interpreted as an
effective temperature for the system on the coarse-grained scale c−1.

We will need two lemmas. The first is purely geometric.

Lemma 2.7. For any finite set A … Zd and for all R0 ¥ N, there
exists A0 … A, called an R0-approximant of A, such that A … [A0]R0

and
d(x, y) > R0 for all x, y ¥ A0, x ] y.

The second lemma is a property of the Kac potential. In ref. 4, this
property was called ‘‘continuity’’ for obvious reasons.

Lemma 2.8. Let s ¥ W, i ¥ Zd, # ¥ { ± }. Define

Vs(i; #) := C
j: j ] i

fij(#, sj). (2.35)

Then there exists c2 > 0 such that for all x, y, d(x, y) [ R,

|Vs(x; #) − Vs(y; #)| [ c2
d(x, y)

R
. (2.36)

Proof. The difference Vs(x; #) − Vs(y; #) can be expressed as
follows:

C
j ¥ BR(x)
j ¨ BR(y)

fxj(#, sj)+ C
j ¥ BR(x) 5 BR(y)

(fxj(#, sj) − fyj(#, sj)) − C
j ¥ BR(y)
j ¨ BR(x)

fyj(#, sj).

The first and last sum can be estimated as follows:

C
j ¥ BR(x)
j ¨ BR(y)

fxj(#, sj) [ (|BR(x)| − |BR(x) 5 BR(y)|) sup fij (2.37)

[ dcc(sup
t

J(t)) 12R+1
R

2d − 1 d(x, y)
R

. (2.38)

Since we are considering the step function, supt J(t)=2−d. The middle sum
vanishes,8 which finishes the proof. L

8 Here we use for the second time the fact that we are considering the step function (1.14).
Nevertheless, if J is an arbitrary K-Lipshitz function:

C
j ¥ BR(x) 5 BR(y)

|fxj(#, sj) − fyj(#, sj)| [ Kccc
d C

j ¥ BR(x) 5 BR(y)
d(cx, cy)

[ Kccc
d |BR(x)|

d(x, y)
R

. (2.39)

Non-Analyticity and the van der Waals Limit 685



Proof of Proposition 2.2. By Lemma 2.3 there exists in the
2R-neighbourhood of each C (l) … C a point j ¥ C that is d̃-incorrect for
s[C]. Let A be the set of all such points. We have C … [A]l+2R. Let A0 be
any 4R-approximant of A. We have A … [A0]4R, i.e., C … [A0]l+6R. Each
j ¥ A0 is d̃-incorrect for s[C], i.e., satisfies

C
k: k ] j

|w ±
jk ( + , s[C]k)| > d̃. (2.40)

Since |w ±
jk ( + , s[C]k)|=2fjk( ± , s[C]k),

Vs[C](j; ± )= C
k: k ] j

fjk( ± , s[C]k) >
d̃

2
. (2.41)

We bound the surface energy from below as follows:

||C|| \ 1
2 C

j ¥ A0

C
k ¥ BR(j) 5 C

C
l: l ] k

fkl(s[C]k, s[C]l)

=1
2 C

j ¥ A0

C
k ¥ BR(j) 5 C

Vs[C](k; s[C]k) \ 1
2 C

j ¥ A0

C
k ¥ BR(j) 5 C(l)

j

Vs[C](k; s[C]k)

\ 1
2 C

j ¥ A0

C
k ¥ BR(j) 5 C(l)

j

d(k, j) [ (d̃/4c2) R

Vs[C](k; s[C]k)

where c2 was defined in Lemma 2.8. Moreover we have, using (2.36), for
each k of the sum,

Vs[C](k; s[C]k)

=Vs[C](j; s[C]k)+(Vs[C](k; s[C]k) − Vs[C](j; s[C]k)) (2.42)

\
d̃

2
− c2

d(k, j)
R

\
d̃

2
− c2

d̃

4c2
=

d̃

4
. (2.43)

We have used the fundamental fact that the correctness of a point j does
not depend on the value taken by the spin sj. This gives the lower bound

||C|| \
1
2

|A0 |
1
2d |B d̃

4c2
R(0)|

d̃

4
\

d̃

2d+3 |B d̃

4c2
R(0)| |Bl+6R(0)|−1 |C| \ r |C|. L
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Since the Peierls constant is uniform in c, we will be able to study the
van der Waals limit at fixed b. Proposition 2.2 allows to define, for
N=1, 2,..., the following numbers called isoperimetric constants:

K(N) :=inf{o > 0: V(C)
d − 1

d [ o ||C||, for all C, V(C) \ N}. (2.44)

These constants will play a crucial role in the construction of the phase
diagram and in the study of non-analyticity. Some of their properties are
given in the following lemma.

Lemma 2.9. The sequence K(N) is decreasing and there exists
positive constants c− , c+ such that

c− c [ inf
N

K(N) [ sup
N

K(N) [ c+c. (2.45)

As a consequence, the following limit exists

K(.) := lim
N Q .

K(N). (2.46)

Moreover, there exists for all E > 0 a sequence (CN)N \ 1, limN Q .V(CN)
=+., such that for N large enough,

(1 − E) K(.) ||CN || [ V(CN)
d − 1

d [ (1+E) K(.) ||CN ||. (2.47)

Proof. K(N) is decreasing by definition. For the upper bound, use
the Peierls condition and Lemma 2.10 hereafter: for all C,

V(C)
d − 1

d

||C||
[

V(C)
d − 1

d

r |C|
[

1
rl

=
1
rn

c — c+c. (2.48)

For the lower bound, we explicitly construct a large contour of cubic
shape. Fix N and take M ¥ N so that LM=[ − M;+M]d 5 Zd, LM ¥ C (l),
|LM | \ 2N. Consider the configuration s defined by si=−1 if i ¥ LM,
si=+1 if i ¥ Lc

M. Clearly, Ig(s) contains a single contour CM (of type +).
Using (2.6), ||CM || [ |CM | [ 2l |“+

1 LM |=2nR |“+
1 LM |. Taking M large enough

guarantees |LM | \ V(CM) \ 1
2 |LM |. This gives, since |“+

1 LM |=2d |LM |
d − 1

d ,

V(CM)
||CM ||

\
1
2

1
2nR

|LM |
|“+

1 LM |
\

c

8dn
V(CM)

1
d — c− cV(CM)

1
d. (2.49)
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The existence of the sequence (CN)N \ 1 follows from the definition of K(N)
and from the existence of the limit K(.). L

Lemma 2.10. Let B ¥ C (l), and let A be the union of all finite
maximal R-connected components of Bc. Then

|B| \ |“+
l A| \ l |A|

d − 1
d . (2.50)

Proof. Consider the edge boundary d+A :={e=Oi, jP: i ¥ A, j ¥ Ac},
where Oi, jP means that i, j are nearest neighbours. Decompose d+A=
E1 2 · · · 2 Ed, where Ea is the set of edges of d+A that are parallel to the
coordinate axis a. Suppose e=Oi, jP, i ¥ A, j ¥ Ac. Since A is maximal,
C (l)

j … B. Moreover,

Te :=3 j, j+(j − i), j+2(j − i),..., j+1 l
2

− 12 (j − i)4 … B. (2.51)

For all e, eŒ ¥ Ea, Te 5 TeŒ=”. So for all a,

|“+
l A| \ : 0

e ¥ Ea

Te
:= C

e ¥ Ta

|Te |=
l
2

|Ea |. (2.52)

Considering the inequality |d+A| [ d maxa |Ea | and the standard isoperime-
tric inequality |d+A| \ 2d |A|

d − 1
d finishes the proof. L

3. RESTRICTED PHASES

Restricted phases intervene when a set of contours {C} is fixed (with a
configuration sC on each of them) and when we re-sum over all the con-
figurations that have this same set of contours. The set of configurations
having the same set of contours was completely characterized in Proposi-
tion 2.1. We are thus naturally led to consider systems living in a volume L

with a boundary condition gL
c, with the constraint that each point i ¥ [L]R

must be d-correct. Our aim is to obtain a polymer representation for the
partition function of such systems, and to show that the associated pressure
behaves analytically at h=0. As will be seen, the presence of the constraint
will allow to treat the system in a way very similar to a high temperature
expansion. The study of restricted phases we present was invented by
Bovier and Zahradnı́k in ref. 4. At a few places our development differs
slightly from theirs, so we expose all the details.
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Fig. 4. The decimation procedure P −

l S Pl. The hatched polygons represent the body B(Pl)
and the legs are the trees {ts1

, ts2
, ts3

, ts4
, ts5

}. Each tsj
is a sub-tree of some ti.

A source of complication will be that the definition of polymers, as
well as their weights, will depend on the boundary conditions specified
outside L. Typically, the L we want to consider is the volume between a
given set of contours and the boundary of a box. That is, the boundary
condition is specified partly by the spins on the contours and partly by the
boundary condition outside the box. To have an idea of the objects we are
going to construct, see Figs. 4 and 5.

Fig. 5. The re-summation of Lemma 3.2. We emphasized the fact that the forest T must
have many points in B(P) 5 L, as was shown in (3.39).

Non-Analyticity and the van der Waals Limit 689



We will only treat the case +, the case − being similar by symmetry.
Fix 0 < d̃ < d < 2−d. Consider any finite set L ¥ C (l). First of all, we must
consider boundary conditions of the following type:

Definition 3.1. A boundary condition gL
c ¥ WL

c is +- admissible if
each i ¥ [L]R is (d̃, +)-correct for the configuration +LgL

c.

More intuitively, a +-admissible boundary condition means that when
looked from any point i inside of L, there is a majority of spins +1 on the
boundary. In our case (i.e., with the step function), this can be formulated
as: for each i ¥ [L]R,

|B •
R(i) 5 B| [

d̃

2
|BR(i)|, (3.1)

where the set B is defined by

B=B(gL
c) :={i ¥ Lc : (gL

c)i=−1}. (3.2)

In this sense, these boundary conditions are ‘‘good;’’ there is hope in being
able to control the +-phase in the volume L. Notice that the boundary
condition specified by a contour on its interior is always admissible. This is
the reason why the parameter d̃ was introduced in their definition.

We define the function that allows to realize the constraint obtained
after Proposition (2.1): consider a +-admissible boundary condition
gL

c ¥ WL
c. Let i ¥ [L]R, sL ¥ WL, and define

1i(sL) :=˛1 if i is (d, +) -correct for sLgL
c,

0 otherwise.
(3.3)

Then define

1(sL) := D
i ¥ [L]R

1i(sL). (3.4)

Notice that 1(+L)=1 since gL
c is +-admissible. The hamiltonian we use

for the restricted system is the one obtained after the re-formulation of
Lemma 2.6 in a region of +-correct points. Set s :=sLgL

c. The restricted
partition function with boundary condition gL

c is

Z+
r (L; gL

c) := C
sL ¥ WL

1(sL) exp 1 − b C
{i, j} 5 L ] ”

i ] j

w+
ij (si, sj) − b C

i ¥ L

U+(si)2 .
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We will show that Z+
r can be put in the form Z+

r =ebh |L|Zr, where Zr is the
partition function of a polymer model, having a normally convergent
cluster expansion in the domain

H+={h ¥ C : Re h > − 1
8}. (3.5)

The reason for log Z+
r to behave analytically at h=0 is that the presence of

contours is suppressed by 1(sL), and that on each spin si=−1 acts an
effective magnetic field

U+(−1)=h+ C
j: j ] i

fij=1+h, (3.6)

which is close to 1 when h is in a neighbourhood of h=0.

3.1. Representation with Polymers

The influence of a boundary condition can always be interpreted as a
magnetic field acting on sites near the boundary. We thus rearrange the
terms of the hamiltonian as follows:

C
{i, j} … L

i ] j

w+
ij (si, sj)+ C

i ¥ L

1U+(si)+ C
j ¥ L

c
w+

ij (si, (gL
c)j)2 . (3.7)

By defining an new effective non-homogeneous magnetic field

m+
i (si) :=U+(si)+h+ C

j ¥ L
c

w+
ij (si, (gL

c)j), (3.8)

we can extract a volume term from Z+
r and get Z+

r =ebh |L|Zr, where

Zr := C
sL ¥ WL

1(sL) exp 1 − b C
{i, j} … L

i ] j

w+
ij (si, sj) − b C

i ¥ L

m+
i (si)2 . (3.9)

Notice that the field m+
i (si) becomes independent of gL

c when d(i, Lc) > R.
Since w+

ij (si, sj)=0 if si=+1 or sj=+1 and m+
i (+1)=0, we need only

consider points i with si=−1, which will be identified with the vertices of
a graph. Each vertex of this graph will then get a factor e−bm

+
i (−1). When

h ¥ H+,

Re m+
i (−1)=1+2 Re h+ C

j ¥ L
c

w+
ij (−, (gL

c)j) \ 1 − 2 1
8 − d̃ > 1

2 . (3.10)

We used the fact that d̃ < 2−d.
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The formulation of Zr in terms of polymers will be a three step pro-
cedure. We first express Zr as a sum over graphs, satisfying a certain con-
straint inherited from 1(sL). Then, we associate to each graph a spanning
tree and re-sum over all graphs having the same spanning tree. We will see
that the weights of the trees obtained have good decreasing properties.
Finally, the constraint is expanded, yielding sets on which the constraint is
violated. These sets are linked with trees. After a second partial re-summa-
tion, this yields a sum over polymers, which are nothing but particular
graphs with vertices living on Zd and whose edges are of length at most R.

A Sum Over Graphs

Let GL be the family of simple non-oriented graphs G=(V, E) where
V … L, each edge e={i, j} ¥ E has d(i, j) [ R. For e={i, j}, set w+

e :=
w+

ij (−, −). Notice that w+
e =−2fij [ 0. Define also m+

i :=m+
i (−1).

Expanding the product over edges leads to the following expression

Zr= C
G ¥ GL

1(V(G)) D
e ¥ E(G)

(e−bw+
e − 1) D

i ¥ V(G)
e−bm

+
i , (3.11)

where 1(V) :=1(sL(V)), and sL(V) ¥ WL is defined by sL(V)i=−1 if i ¥ V,
+1 otherwise. With this formulation in terms of graphs, the constraint
1(V(G))=1 is satisfied if and only if

C
e={i, j}

j ¥ V(G) 2 B

|w+
e | [ d, - i ¥ [L]R. (3.12)

Moreover, the fact that the boundary condition gL
c is +-admissible reduces

to

C
e={i, j}

j ¥ B

|w+
e | [ d̃, - i ¥ [L]R. (3.13)

A Sum Over Trees

Suppose we are given an algorithm that assigns to each connected
graph G0 a deterministic spanning tree T(G0), in a translation invariant
way (that is if G −

0 is obtained from G0 by translation then T(G −

0) is obtained
from T(G0) by the same translation). To be precise, we consider the
Penrose algorithm considered in Chapter 3 of ref. 18.9 We apply the

9 The Penrose algorithm requires the choice of an origin among the vertices of the graph. We
choose this origin as the smallest vertex of the graph with respect to the lexicographical
order.
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Penrose algorithm to each component of each graph G appearing in the
partition function (3.11). Let TL … GL denote the set of all forests. We have

Zr= C
T ¥ TL

1(V(T)) D
t ¥ T

w+(t), (3.14)

where the product is over trees of T, and the weight of each tree is defined
by

w+(t) := C
G ¥ GL :

T(G)=t

D
e ¥ E(G)

(e−bw+
e − 1) D

i ¥ V(G)
e−bm

+
i . (3.15)

Isolated sites {i} … L are also considered as trees. In this case,
w+({i})=e−bm

+
i . The following lemma shows how the re-formulation in

terms of trees allows to take advantage of the constraint.

Lemma 3.1. Let T ¥ TL be a forest such that 1(V(T))=1. Then for
each tree t ¥ T,

||w+(t)||H+
[ D

e ¥ E(t)
(e−bw+

e − 1) D
i ¥ V(t)

e−1
4 b. (3.16)

Proof. For each t ¥ T, let Eg(t) denote the set of edges of the
maximal connected graph of {G ¥ GL : T(G)=t} (see ref. 18). We can
express the weight as follows:

w+(t)= D
e ¥ E(t)

(e−bw+
e − 1) D

i ¥ V(t)
e−bm

+
i C

G ¥ GL :
T(G)=t

D
e ¥ E(G)0E(t)

(e−bw+
e − 1)

= D
e ¥ E(t)

(e−bw+
e − 1) D

i ¥ V(t)

e−bm
+
i D

e ¥ Eg(t)0E(t)

e−bw+
e .

Since 1(V(T))=1, the constraint (3.12) is satisfied, and the last product
can be bounded by:

D
e ¥ Eg(t)0E(t)

eb |w+
e | [ D

i ¥ V(t)
D

e={i, j}
j ¥ V(t)

eb |w+
e | (3.17)

= D
i ¥ V(t)

exp b C
e={i, j}
j ¥ V(t)

|w+
e | [ D

i ¥ V(t)
ebd. (3.18)

This gives the result, since Re m+
i \ 1

2 by (3.10), and d [ 2−d [ 1
4 . L
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Notice that to obtain (3.18), we only needed that the bound

C
e={i, j}
j ¥ V(t)

|w+
e | [ d, - i ¥ V(t) (3.19)

be satisfied. This is weaker than (3.12) and clearly 1(V(T))=1 only if
(3.19) is satisfied for all t ¥ T. In the sequel we can thus assume that the
trees we consider always satisfy (3.19), independently of each other. So the
bound (3.16) can always be used. A direct consequence of the last lemma is
the following result which shows that trees and their weights satisfy the
main condition ensuring convergence of cluster expansions.

Corollary 3.1. Let 0 < c [ 1
8 b, E > 0. There exists c0 > 0 and

b1=b1(E) such that for all c ¥ (0, c0), b \ b1, the following bound holds:

C
t: V(t) ¦ 0

||w+(t)||H+
ec |V(t)| [ E. (3.20)

Proof. Using Lemma 3.1,

||w+(t)||H+
ec |V(t)| [ D

e ¥ E(t)
(e−bw+

e − 1) D
i ¥ V(t)

e−1
8 b. (3.21)

When t is a single isolated point (the origin), then we have a factor e−1
8 b.

When V(t) ¦ 0, E(t) ] ”, we define the generation of t, gen(t), as the
number of edges of the longest self avoiding path in t starting at the origin.
The sum in (3.20) is bounded by

e−1
8 b+ C

g \ 1
C

t: V(t) ¦ 0
gen(t)=g

D
e ¥ E(t)

(e−bw+
e − 1) D

i ¥ V(t)
e−1

8 b

[ e−1
8 b+ C

g \ 1
e− 1

16 bg C
t: V(t) ¦ 0
gen(t)=g

D
e ¥ E(t)

(e−bw+
e − 1) D

i ¥ V(t)
e− 1

16 b

[ e−1
8 b+ C

g \ 1
e− 1

16 bgag,

where we defined (Vl(t) is the set of leaves of the tree t):

ag := C
t: V(t) ¦ 0
gen(t)=g

D
e ¥ E(t)

(e−bw+
e − 1) D

i ¥ V(t)0Vl(t)
e− 1

16 b D
i ¥ Vl(t)

e− 1
32 b. (3.22)
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We are going to show that ag+1 [ ag for all g \ 1. Before going further, we
define

c0 :=sup{c > 0 : 2ccc
d sup

s
J(s) [ 1

64}. (3.23)

Since e−bw+
e − 1 [ b |w+

e | eb |w+
e | and |w+

e |=2fij we can bound, when c [ c0,

C
e ¦ 0

(e−bw+
e − 1) e− 1

32 b [ be− 1
64 b C

e ¦ 0
|w+

e | [ 2be− 1
64 b — bz(b). (3.24)

Clearly, a tree t of generation g+1 can be obtained from a sub-tree tŒ … t
of generation g by attaching edges to leaves of tŒ. Let x be a leaf of tŒ. The
sum over all possible edges (if any) attached at x is bounded by

1+ C
k \ 1

1
k!

C
e1 ¦ x

· · · C
ek ¦ x

D
k

i=1
(e−bw+

ei − 1) e− 1
32 b [ 1+ C

k \ 1

1
k!

(bz(b))k=ebz(b).

Assuming b is large enough so that z(b) [ 1
32 , the weight of the leaf x

changes into e− 1
16 bebz(b) [ e− 1

32 b, which is exactly what appears in ag. This
shows that ag+1 [ ag. We then have ag+1 [ ag [ · · · [ a1. Like we just did,
it is easy to see that a1 [ e− 1

32 b. This proves the result. L

A Sum Over Polymers

After the partial re-summation over the graphs having the same
spanning tree, the constraint 1(V(T)) in (3.14) still depends on the relative
positions of the trees. This ‘‘multi-body interaction’’ can be worked out by
expanding

1(V(T))= D
i ¥ [L]R

1i(V(T))= D
i ¥ [L]R

(1+1c
i (V(T)))= C

M … [L]R

D
i ¥ M

1c
i (V(T)),

where 1c
i (V(T)) :=1i(V(T)) − 1. This yields

Zr= C
T ¥ TL

C
M … [L]R

1 D
i ¥ M

1c
i (V(T))21 D

t ¥ T
w+(t)2 . (3.25)

Consider a pair (T, M) in (3.25). Let i ¥ M. The function 1c
i (V(T)) is non-

zero only when i is not (d, +)-correct; it depends on the presence of trees of
T in the R-neighbourhood of i and possibly on the points of B(gL

c) if
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BR(i) 5 Lc ] ”. To make these dependencies only local, we are going to
link the R-neighbourhood of points of M with the trees of T.

Consider the graph N=N(M) defined as follows: the vertices of N
are given by

V(N) := 0
i ¥ M

BR(i). (3.26)

Then, N has an edge between x and y if and only if Ox, yP is a pair of
nearest neighbours of the same box BR(i) for some i ¥ M. The graph N
decomposes naturally into connected components (in the sense of graph
theory) N1, N2,..., NK. Some of these components can intersect Lc.

We then link trees ti ¥ T with components Nj ¥ N. To this end, we
define an abstract graph Ĝ: to each tree ti ¥ T, associate an abstract vertex
wi and to each component Nj an abstract vertex zj. The edges of Ĝ are
defined as follows: Ĝ has only edges between vertices wi and zj, and this
occurs if and only if V(ti) 5 V(Nj) ] ”. Consider a connected component
of Ĝ, whose vertices {wi1

,..., wil
, zj1

,..., zjl
} correspond to a set P −

l=
{ti1

,..., til
, Nj1

,..., Njl
}. We change P −

l into a set Pl, using the following
decimation procedure: if P −

l={ti1
} is a single tree then Pl :=P −

l. Otherwise,

(1) delete from P −

l all trees tik
that have no edges,

(2) for all tree tik
containing at least one edge, delete all edges

e ¥ E(tik
) whose both end-points lie in the same component Njm

.

The resulting set is of the form Pl={ts1
,..., tsl

, Nj1
,..., Njl

}, where each
tree tsi

is a sub-tree of one of the trees {ti1
,..., til

}. Pl is called a polymer.
The decimation procedure P −

l S Pl is depicted on Fig. 4.
The body of Pl is B(Pl) :=V(Nj1

) 2 · · · 2 V(Njl
). The legs of Pl,

L(Pl), are the trees {ts1
,..., tsl

}.
A polymer can have no body (in which case it is a tree of TL), or no

legs (in which case it is a single component Nj1
). We define the support

V(P) as the total set of sites:

V(P) := 0
t ¥ L(P)

V(t) 2 0
i

V(Ni). (3.27)

Often we denote V(P) also by P. Two polymers are compatible if and
only if V(P1) 5 V(P2)=”, denoted P1 ’ P2. We have thus associated to
each pair (T, M) a family of pairwise compatible polymers {P} :=j(T, M).
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The set of all possible polymers constructed in this way is denoted P+
L (gL

c).
The representation of Zr in terms of polymers is then

Zr= C
{P} … P

+
L (gLc)

compat.

D
P ¥ {P}

w+(P), (3.28)

where the weight is defined by

w+(P) := C
(T, M):

j(T, M)=P

1 D
i ¥ M

1c
i (V(T))21 D

t ¥ T
w+(t)2 . (3.29)

We should have in mind that w+(P) depends on the position of P inside
the volume L, via the boundary condition gL

c: more precisely if
B(P) 5 Lc ] ” or if there exists a leg t ¥ L(P) such that d(t, Lc) [ R.
Therefore, we define the family P+ of free polymers of type + whose
weights depends only on the intrinsic structure of P, and not on the
boundary condition. The family P+ is translation invariant, as well as
the weight of each of its polymers. To any finite family P, we associate the
partition function

Zr(P) := C
{P} … P
compat.

D
P ¥ {P}

w+(P), (3.30)

where the product equals 1 when {P}=”. For instance, we have obtained

Z+
r (L; gL

c)=ebh |L|Zr(P
+
L (gL

c)). (3.31)

Everything we have done until now can be done for a − -admissible
boundary condition yL

c, yielding a family of polymers P−
L (yL

c), with
weights w−(P). In this case, sites get a factor e−bm

−
i . In particular, if we con-

sider the spin-flipped boundary condition − gL
c defined by (−gL

c)i := − (gL
c)i,

which is − -admissible, we have when h is purely imaginary,10

10 Here, z̄ denotes the complex conjugate of z.

Zr(P
+
L (gL

c))=Zr(P
−
L (−gL

c)). (3.32)

3.2. Analyticity of the Restricted Phases

Define the restricted pressures by

p ±
r, c := lim

L q Zd

1
b |L|

log Z ±
r (L; ± L

c), (3.33)
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where the thermodynamic limit is taken along a sequence of cubes. A result
of the present section is that the restricted pressures, unlike the total pres-
sure pc, behave analytically at h=0.

We study the weight w+(P) (w−(P) is similar by symmetry). The point
is that we linked trees with the R-neighbourhood of points of the set M,
and we must now see that this thickening does not destroy, from the point
of view of entropy, the uniformity we have been able to obtain with respect
to the scaling parameter c. Moreover, the body of polymers can intersect Lc.
At this point we will see that d − d̃ > 0 is crucial.

Lemma 3.2. There exists b2 and y0 > 0 such that for all b \ b2 and
for all c ¥ (0, c0), the following holds: each polymer P ¥ P+

L (gL
c) satisfies

||w+(P)||H+
[ e−y0b |B(P)| D

e ¥ L(P)
(e−bw+

e − 1) D
i ¥ L(P)

e− 1
12 b. (3.34)

Proof. Remember that the bound (3.16) holds for each tree under
consideration. If B(P)=”, then P is a tree and the result follows from
Lemma 3.1. Otherwise, ||w+(P)||H+

is bounded by

C
(T, M):

j(T, M)=P

1 D
i ¥ M

|1c
i (V(T))|2 D

t ¥ T

1 D
e ¥ E(t)

(e−bw+
e − 1) D

i ¥ V(t)
e−1

4 b2 .

Consider a pair (T, M) such that j(T, M)=P. Let i0 ¥ M, and assume
1c

i0
(V(T)) ] 0. This implies, with regard to (3.12),

C
e={i0, j}

j ¥ V(T) 2 B

|w+
e | > d. (3.35)

But, according to (3.13), we have

C
e={i0, j}

j ¥ B

|w+
e | [ d̃. (3.36)

This implies the crucial lower bound

C
e={i0, j}
j ¥ V(T)

|w+
e | \ d − d̃ > 0. (3.37)

Since |w+
e |=2fij [ 2ccc

d sups J(s), we can find a constant c3 such that

|V(T) 5 B •
R(i0)| > (d − d̃) c3 |BR(i0)|. (3.38)
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In this sense, the forests that contribute to w+(P) accumulate in the
neighbourhood of each point i0 ¥ M. See Fig. 5. Let M0 be any
2R-approximant of M. Then we have |B(P)| [ |M0 ||B3R(0)| and so

|V(T) 5 B(P)| \ C
i0 ¥ M0

|V(T) 5 BR(i0)| \ (d − d̃) c4 |B(P)|, (3.39)

where c4 is a constant. Now, each i ¥ V(T) gets a factor e−1
4 b=e−3 1

12 b. One
factor e− 1

12 b contributes to extract a term decreasing exponentially fast with
the size of B(P), using (3.39):

e− 1
12 (d − d̃) c4b |B(P)|. (3.40)

A second factor e− 1
12 b contributes to the weight of the legs. Extracting this

contribution gives

D
e ¥ L(P)

(e−bw+
e − 1) D

i ¥ L(P)
e− 1

12 b, (3.41)

The last factor e− 1
12 b is used to re-sum over all the possible configurations

of T inside the body B(P) (see Fig. 5), that is over all forests TŒ,
V(TŒ) … B(P), where each tree tŒ ¥ TŒ gets a weight bounded by

w0(tŒ) := D
e ¥ E(tŒ)

(e−bw+
e − 1) D

i ¥ V(tŒ)
e− 1

12 b. (3.42)

The remaining sum is thus bounded by

C
TŒ: V(TŒ) … B(P)

D
tŒ ¥ TŒ

w0(tŒ) — G0(B(P)). (3.43)

This partition function can be studied with a convergent cluster expansion.
Proceeding as we did in Corollary 3.1, we can take b sufficiently large so
that the weight w0(tŒ) satisfies (3.20). We can then guarantee that

|log G0(B(P))| [ |B(P)|. (3.44)

The sum over all possible sets M such that N(M) has a set of vertices given
by B(P) is bounded by 2 |B(P)|. Altogether these bounds give

e− 1
12 (d − d̃) c4b |B(P)|2 |B(P)|e |B(P)| — e−y0b |B(P)|,

which finishes the proof. L
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We now give the consequence of this lemma, namely that polymers
satisfy the main criterion needed for having a convergent cluster expansion.

Corollary 3.2. Let 0 < c [ min(y0
2 , 1

24) b, E > 0. There exists
b3=b3(E), such that for all b \ b3 and for all c ¥ (0, c0), the following
holds:

C
P: V(P) ¦ 0

||w+(P)||H+
ec |V(P)| [ E. (3.45)

Proof. Lemma 3.2 allows to bound

||w+(P)||H+
[ 1 D

N ¥ P
w0(N)21 D

t ¥ L(P)
w0(t)2 — w0(P), (3.46)

where the weight of each component of the body N is w0(N) :=e−y0b |V(N)|

and the weight of each leg t was defined in (3.42). Fix E > 0 small. It is easy
to show that when b is large enough,

C
N: V(N) ¦ 0

w0(N) e (c+E) |V(N)| [ 1
2 E, (3.47)

and, proceeding like in Corollary 3.1,

C
t: V(t) ¦ 0

w0(t) e (c+E) |V(t)| [ 1
2 E. (3.48)

Let n(P) denote the number of objects (components N and trees t) con-
tained in P. That is, if P={t1,..., tL, N1,..., NK}, then n(P)=L+K. We
will show by induction on N=1, 2,... that

lN := C
P: V(P) ¦ 0
n(P) [ N

w0(P) ec |V(P)| [ E, (3.49)

which will finish the proof. If N=1 then P can be either a single compo-
nent N or a tree t. The bound then follows from (3.47) and (3.48). Suppose
b is large and that the bound holds for N. If P satisfies V(P) ¦ 0,
n(P) [ N+1, we choose an object of P that contains the origin (which can
be a tree t0 or a component N0), and decompose P as follows: either
P={N0} 2 {P1,..., Pk} with V(N0) ¦ 0, V(Pi) 5 V(N0) ] ”, n(Pi) [ N,
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Pi ’ Pj for i ] j, or P={t0} 2 {P1,..., Pk} with V(t0) ¦ 0, and V(Pi) 5
V(t0) ] ”, n(Pi) [ N, Pi ’ Pj for i ] j. In the first case, we have, using the
induction hypothesis and (3.47),

C
N0: V(N0) ¦ 0

w0(N0) ec |V(N0)| C
k \ 0

1
k!
1 C

P: V(P) 5 V(N0) ] ”

n(P) [ N

w0(P) ec |V(P)|2k

(3.50)

[ C
N0: V(N0) ¦ 0

w0(N0) ec |V(N0)| C
k \ 0

1
k!

(|V(N0)| lN)k (3.51)

[ C
N0: V(N0) ¦ 0

w0(N0) ec |V(N0)|eE |V(N0)| [
1
2

E. (3.52)

In the second case the same computation yields, using (3.48),

C
t0: V(t0) ¦ 0

w0(t0) ec |V(t0)| C
k \ 0

1
k!
1 C

P: V(P) 5 V(t0) ] ”

n(P) [ N

w0(P) ec |V(P)|2k

[ C
t0: V(t0) ¦ 0

w0(t0) ec |V(t0)|eE |V(t0)| [
1
2

E. (3.53)

This shows that lN+1 [ E and finishes the proof. L

We now state the main result concerning restricted phases and their
analyticity properties, again only for the case #=+. We refer to Appendix A
for notations. Here polymers play the role of animals. Clusters of polymers
associated to P+

L (gL
c) are denoted P̂ ¥ P̂+

L (gL
c). By Lemma 1.1, (3.45)

implies

sup
x ¥ L

C
P̂ ¦ x

||w+(P̂)||H+
[ sup

x ¥ L

C
P̂ ¦ x

|w0(P̂)| [ g(E), (3.54)

where the weights w+(P̂) and w0(P̂) are defined like in (A3). Since E can be
made arbitrarily small by taking b large enough, we will replace g(E) by a
function Er(b), where the subscript r is to indicate that this function con-
cerns the restricted phase. We define H̃+ :={Re h > − 1

16} … H+.

Theorem 3.1. Let b be large enough, c ¥ (0, c0). Let L ¥ C (l) and gL
c

be a +-admissible boundary condition. Then Zr(P
+
L (gL

c)) has a cluster
expansion that converges normally in H+, given by

log Zr(P
+
L (gL

c))= C
P̂ ¥ P̂

+
L (gLc)

w+(P̂). (3.55)
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The maps h W log Zr(P
+
L (gL

c)), h W p+
r, c(h) are analytic in H+. Moreover

there exists a function Er(b), limb q . Er(b)=0, such that

||log Zr(P
+
L (gL

c))||H+
[ Er(b) |L|, C

P̂ ¥ P̂
+
L (gLc)

P̂ ¦ 0

||w+(P̂)||H+
[ Er(b),

> d
dh

log Zr(P
+
L (gL

c))>
H̃+

[ Er(b) |L|. (3.56)

The proof of the theorem follows easily from Lemma 1.1. Analyticity
follows from the fact that the convergence is normal on H+. The bound on
the first derivative is obtained by using the Cauchy formula: any disc of
radius 1

16 centered at z ¥ H̃+ is contained in H+. This also implies the exis-
tence of a constant Cr > 0 such that for all integer k \ 2,

1
|L|

: dk

dhk log Z+
r (L; gL

c) :
h=0

[ Ck
r k!, |p+(k)

r, c (0)| [ Ck
r k!. (3.57)

4. THE PHASE DIAGRAM

Throughout this section and until the end of the paper we assume
c ¥ (0, c0) is fixed, where c0 was given in (3.23). To start with, consider the
partition function

Z+(L) := C
sL ¥ W

+
L

e−bHL(sL+Lc), (4.1)

where

W+
L :={sL ¥ WL : d(Ig(sL+L

c), Lc) > l}. (4.2)

For each sL ¥ W+
L , the decomposition of Ig(sL+L

c) into connected compo-
nents yields an admissible family {C}, such that C … L and d(C, Lc) > l for
each C ¥ {C}. Then, L is decomposed into L={C} 2 L+ 2 L−, where L#

are the points of L0{C} that are (d, #)-correct for the configuration
sL+L

c.
In (4.1), we re-sum over the configurations sL

+ (resp. sL
+) on L+

(resp. L−) that yield the same set of contours {C}. In Proposition 2.1 we
characterized explicitly the constraints satisfied by the configurations sL

± :
each point i ¥ [L+]R must be (d, +)-correct for the configuration
sL

++L
cs{C}, where s{C} is the configuration specified by the contours

on the union of their supports. Similarly, each point i ¥ [L−]R must be
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(d, −)-correct for the configuration sL
− s{C}. Using the re-formulation of

the hamiltonian given in Lemma 2.6 we get:

Z+(L)= C
{C} … L

1 D
C ¥ {C}

r(C)2 Z+
r (L+;+L

cs{C}) Z−
r (L−; s{C}), (4.3)

where the sum is over admissible families of contours, and

r(C) :=e−bHC(s[C]). (4.4)

Notice that when {C}=”, then L — L+ and the summand of (4.3) equals
Z+

r (L;+L
c). Since they are subject to boundary conditions that depend on

the family of contours {C}, the restricted phases induce an interaction
among the contours. Nevertheless, the boundary conditions imposed by the
contours and +L

c on L+ and L− are admissible (in the sense of Definition 3.1).
This implies that the results of Section 3 can be used for the restricted
partition functions appearing in (4.3).

Since we need to represent the partition function with objects whose
compatibility is purely geometrical, we need to proceed by induction, and
consider systems living in the interior of external contours. Therefore, we
must study functions similar to (4.3), with an arbitrary +-admissible
boundary condition gL

c. We thus define

G+(L; gL
c) := C

{C} … L

1 D
C ¥ {C}

r(C)2 Z+
r (L+; gL

cs{C}) Z−
r (L−; s{C}). (4.5)

Contours always lie at least at distance l from Lc. The external contours of
{C} can be subject to particular constraints (as will appear, for example, in
Section 5), but we omit it in the notation. Notice that for the empty family
{C}=”, the summand corresponds to a pure restricted phase Z+

r (L; gL
c).

The aim, in the study of G+(L; gL
c), is to extract from (4.5) a global

contribution of the restricted phase. In the Ising model, the same operation
amounts to extract the trivial term ebh |L|. Here we extract Z+

r (L, gL
c)=

ebh |L|Zr(P
+
L (gL

c)), and our aim is to reach the representation (4.17). The
deviations from the restricted phase will be described by chains, i.e., con-
tours linked by clusters of polymers (polymers describe the restricted
phase). In Section 4.1, we expose this linking procedure. In Section 4.2 we
show how to handle the entropy of chains, preserving the uniformity in the
scaling parameter c. In Section 4.3 we study the weights of chains and their
dependence on the magnetic field near Re h=0, i.e., at coexistence. In
Section 4.4 we study pure phases, i.e., {Re h > 0} and {Re h < 0}.
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4.1. The Linking Procedure

We first express G+(L; gL
c) as a sum over external contours. By

Lemma 2.5, each external contour is of type +. Let {C} be a family of
external contours. Then, L is decomposed into

L=extL{C} 2 {C} 2 0
C ¥ {C}

int C,

where extL{C} :=L 5 4C ¥ {C}ext C. For each family of admissible external
contours {C}, we re-sum over the configurations whose external contours
are given exactly by {C}. This induces, for all C, a partition function
G−(int C;+sC), which can be expressed as in (4.5). On extL{C}, we get a
restricted partition function Z+

r (extL{C}; gL
cs{C}). We thus have

G+(L; gL
c)

=Z+
r (L; gL

c)+ C
{C} … L

ext.

Z+
r (extL{C}; gL

cs{C}) D
C

r(C) G−(int C; sC ), (4.6)

where the sum is over non-empty families of external contours. Consider the
configuration − sC obtained by spin-flipping sC, i.e., (−sC)i := − (sC)i for
all i ¥ C. We introduce the functions Z+

r (int C; − sC) and G+(int C; − sC)
and consider, for a while, the ratio

Z+
r (extL{C}; gL

cs{C}) <C Z+
r (int C; − sC)

Z+
r (L; gL

c)
. (4.7)

Using the polymer representation of Section 3, we consider the family of
polymers P+

ext :=P+
extL{C}(gL

cs{C}) associated to Z+
r (extL{C}; gL

cs{C}), the
families P+

int C :=P+
int C(−sC) associated to each of the Z+

r (int C; − sC), as
well as the family P+

L :=P+
L (gL

c) associated to Z+
r (L; gL

c). Since the
expansions of these functions are absolutely convergent, we can rearrange
the terms. The volume contributions from extL{C} and 1C int C cancel,
and we get

Zr(P
+
ext) <C Zr(P

+
int C)

Zr(P
+
L )

=exp 1C
P̂

± w+(P̂)+C
C

E+
C
2 ,

where we used the abbreviation

C
P̂

± w+(P̂) — C
P̂ ¥ P̂

+
ext

d(P̂, {C}) [ R

w+(P̂) − C
P̂ ¥ P̂

+
L

d(P̂, {C}) [ R
P̂ 5 extL{C} ] ”

w+(P̂). (4.8)
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The sign ± in front of w+(P̂) is chosen in function of the sum to which P̂
belongs. Define l+(P̂) :=e ± w

+(P̂) − 1 and expand

eC P̂ ± w
+(P̂)=D

P̂

(1+l+(P̂))= C
{P̂1,..., P̂n}

D
n

i=1
l+(P̂i). (4.9)

The function E+
C depends only on the structure of C, and is given by

E+
C = C

P̂ ¥ P̂
+
int C

d(P̂, C) [ R

w+(P̂) − C
P̂ ¥ P̂

+

P̂ 5 ext C=”

d(P̂, C) [ R

w+(P̂), (4.10)

where P̂+ denotes the family of clusters associated to free polymers of type +.
Notice that E+

C is analytic in H+. Since |[C]R | [ 3d |C| we have, if b is large
enough (see Theorem 3.1)

||E+
C ||H+

[
1
3

|C|, > d
dh

E+
C
>

H̃+

[
1
3

|C|. (4.11)

If we define the weight (we denote +sC — sC)

w+(C) :=r1(C)
G−(int C; +sC)
G+(int C; − sC)

, (4.12)

with r1(C) :=r(C) e−bh |C|eE+
C , we have

G+(L; gL
c)

Z+
r (L; gL

c)
=1+ C

{C} … L
ext.

C
{P̂1,..., P̂n}

1D
n

i=1
l+(P̂i)21D

C

w+(C)
G+(int C; − sC)
Z+

r (int C; − sC)
2 .

We can then repeat the same procedure of summing inside external con-
tours of G+(int C; − sC), etc. This procedure continues until we reach
contours whose interior can’t contain any contour. At the end,

G+(L; gL
c)

Z+
r (L; gL

c)
=1+ C

{C} … L

C
{P̂}

1D
P̂

l+(P̂)21D
C

w+(C)2 , (4.13)

where the sum over {C} … L contains contours of type +, and each cluster
P̂ lies at distance at most R from one or several contours of {C}. For this
reason, the weight of some polymers can depend on the configuration sC of
the contours C that lie in their neighbourhood (or on gL

c).
We get rid of these dependencies by linking polymers to contours. Like

we did in Section 3 (when linking trees with components of the graph N),
we associate to each pair ({C}, {P̂}) an abstract graph Ĝ as follows: each
contour Cj ¥ {C} is represented by an abstract vertex zj, each cluster
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P̂k ¥ {P̂} is represented by an abstract vertex wk. This defines V(Ĝ). Then,
we put an edge between zj and wk if and only if d(Cj, P̂k) [ R. We also put
an edge between wk1

and wk2
if and only if V(P̂k1

) 5 V(P̂k2
) ] ”.

Each connected component of Ĝ, with vertices, say, {zj1
,..., zjl

,
wk1

,..., wkl
}, represents a subset of {C} 2 {P̂} given by X={Cj1

,..., Cjl
,

P̂k1
,..., P̂kl

}. X is called a chain of contours, or simply a chain. We denote
by {X} the family of chains associated to the pair ({C}, {P̂}). The chains
of {X} are of type +, and pairwise compatible by definition. The
support of X, also written X, denotes the union 1C ¥ X C 2 1P̂ ¥ X P̂.
Notice that if two chains X, XŒ are not compatible, then b(X) 5
b(XŒ) ] ”, where

b(X) := 0
C ¥ X

[C]l 2 0
P̂ ¥ X

P̂. (4.14)

The weight of a chain is defined by

w+(X) :=1 D
P̂ ¥ X

l+(P̂)21 D
C ¥ X

w+(C)2 , (4.15)

and depends only on the intrinsic structure of the chain X (except, maybe,
if d(X, Lc) [ R). The final representation of the partition function is thus

G+(L; gL
c)=Z+

r (L; gL
c) C

{X}
D

X ¥ {X}
w+(X) (4.16)

— Z+
r (L; gL

c) X+(L; gL
c). (4.17)

In (4.16), the product is defined to be equal to 1 when {X}=”. This last
expression nicely expresses the fact that chains of contours describe devia-
tions from a restricted phase. For the restricted phase, there corresponds a
family P+

L (gL
c) associated to Z+

r (L; gL
c). Similarly, there corresponds a

family of chains X+
L (gL

c) associated to X+(L; gL
c). The partition function

can be written in terms of these families as

G+(L; gL
c)=ebh |L|Zr(P

+
L (gL

c)) X(X+
L (gL

c)). (4.18)

By definition, X(X+
L (gL

c)) :=1 when X+
L (gL

c)=”. Everything that was
done until now can be applied also to the case where gL

c is − -admissible,
yielding chains of type − .

4.2. The Entropy of Chains

Before starting the analysis of the weights, we show how a priori
bounds on the weights l+(P̂) and w+(C) allow to handle the summation
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of weights of chains. In this section we assume that |l+(P̂)| [ l0(P̂),
|w+(C)| [ r0(C), i.e.,

|w+(X)| [ 1 D
P̂ ¥ X

l0(P̂)21 D
C ¥ X

r0(C)2 — w0(X). (4.19)

Convention. Now and in the sequel we will always use a subscript
‘‘0’’ in the weight of an object to specify that it depends only on the geo-
metric structure of the object (as we did in (3.46), Section 3.2). That is, such
weights will always be translation invariant. When a weight is defined for
an object, we use the same letter for the weight of the clusters of such
objects (see Appendix A).

The proof of the following lemma is essentially the same as the one of
Corollary 3.2. We use the notations |P̂| :=|1P ¥ P̂ V(P)|, |X| :=;C ¥ X |C|+
; P̂ ¥ X |P̂|.

Lemma 4.1. Let c > 0, E > 0, and assume the weights l0(P̂), r0(C)
satisfy the bounds

C
P̂ ¦ 0

l0(P̂) e (c+E(2d+1)) |P̂| [
E

2
, C

C: [C]l ¦ 0

r0(C) e (c+E) |[C]l| [
E

2
. (4.20)

Then the weight w0(X) satisfies the condition (A.4) of Lemma A.1.
Namely,

C
X: b(X) ¦ 0

w0(X) ec |b(X)| [ E. (4.21)

Proof. For a chain X={C1,..., CL, P̂1,..., P̂M}, let n(X) :=L+M denote
the number of objects composing X (a cluster P̂i is considered as a single
object). We show by induction on N=1, 2,... that

tN := C
X: b(X) ¦ 0
n(X) [ N

w0(X) ec |b(X)| [ E. (4.22)

If n(X)=1 then X contains a single object, i.e., a contour. Then t1 [ E

follows from (4.20). So suppose (4.22) holds for N, and consider tN+1; this
sum can be bounded by a sum in which each chain X is decomposed into
[C0]l ¦ 0, X ¦ C0, or into P̂0 ¦ 0, X ¦ P̂0. This means:
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(1) in the first case, X decomposes into X={C0} 2 {X1,..., XK}11

11 The chains Xi are obtained as follows: consider the abstract connected graph Ĝ associated
to the chain X. Then, remove all the edges of Ĝ that are adjacent to the vertex z0 represent-
ing C0 and z0 itself, and consider the decomposition of the remaining graph into connected
components. These components are exactly the representatives of X1,..., XK.

with [C0]l ¦ 0, d(Xi, C0) [ R, n(Xi) [ N for all i=1,..., K, Xi 5 Xj=” for
all i ] j. The contribution to tN+1 is thus bounded by

C
C0: [C0]l ¦ 0

r0(C0) ec |[C0]l| C
K \ 0

1
K!

D
K

i=1
C

Xi: d(Xi, C0) [ R
n(Xi) [ N

w0(Xi) ec |b(Xi)|

[ C
C0: [C0]l ¦ 0

r0(C0) ec |[C0]l| C
K \ 0

1
K!

(|[C0]R | tN)K

[ C
C0: [C0]l ¦ 0

r0(C0) e (c+E) |[C0]l| [
E

2
, (4.23)

where we used the induction hypothesis tN [ E.

(2) in the second case, X={P̂0} 2 {X1,..., XK} with P̂0 ¦ 0,
d(Xi, P̂0) [ R, n(Xi) [ N for all i=1,..., K, Xi 5 Xj=” for all i ] j. A
chain Xi of this decomposition can be of two types:

(i) there exists a cluster P̂ ¥ Xi such that P̂ 5 P̂0 ] ”. Then the
contribution from these chains is at most

|P̂0 | C
Xi: b(Xi) ¦ 0

n(Xi) [ N

w0(Xi) ec |b(Xi)|=|P̂0 | tN [ |P̂0 | E. (4.24)

(ii) there exists C ¥ Xi, C 5 {[P̂0]R}l ] ”, where the thickening
{ · }l was defined in (2.15). Notice that the set {[P̂0]R}l ¥ C (l) contains at
most 2d|P̂0 | cubes C (l). Since contours are composed of cubes C (l), the
contribution from these chains can be bounded by

2d |P̂0 | tN [ 2dE |P̂0 |. (4.25)

We can then proceed like in (4.23), and get a contribution to tN+1 bounded
by

C
P̂0 ¦ 0

l0(P̂0) ec |P̂0|eE(2d+1) |P̂0| [
E

2
. (4.26)

Altogether, this shows that tN+1 [ E. L
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4.3. Domains of Analyticity

In this section we consider the dependence of the weights w+(X) on
the magnetic field h ¥ C, in a neighbourhood of {Re h=0}. For obvious
reasons, the domain in which w+(X) can be shown to be analytic depends
on the contour C ¥ X that has the largest interior. Everything we say in this
section holds for chains of both types, but for the sake of simplicity, the
statements will be given only for chains of type +.

The domains of analyticity depend on the isoperimetric constants
K(N) defined in (2.43). Consider the reals

R(N) :=
h

2K(N) N
1
d
, (4.27)

where h ¥ (0, 1) will play an important role later in the study of the deriva-
tives. We know from Lemma 2.9 that R(N) N

1
d is increasing and that

lim
N Q .

R(N) N
1
d=

h

2K(.)
. (4.28)

Since we want the domains of analyticity to be decreasing with the size of
the contours, we define

Rg(N) :=min{R(NŒ): 1 [ NŒ [ N}. (4.29)

The sequences Rg(N) and R(N) have the same asymptotic behaviour, as
the following lemma shows.

Lemma 4.2.

lim
N Q .

Rg(N) N
1
d=

h

2K(.)
. (4.30)

Proof. First notice that there exists an unbounded increasing
sequence N1, N2,..., such that Rg(Ni)=R(Ni). This is a direct consequence
of the bounds

Rg(N) [ R(N) [
h

2K(.) N
1
d
. (4.31)

Since R(N) N
1
d increases, it is sufficient to show that Rg(N) N

1
d is increasing.

Consider the interval [N, N+1]. We have two possibilities: (1) R(N+1) \
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Rg(N). In this case, Rg(N+1)(N+1)
1
d=Rg(N)(N+1)

1
d \ Rg(N) N

1
d.

(2) R(N+1) [ Rg(N). In this case, Rg(N+1)(N+1)
1
d=R(N+1)(N+1)

1
d \

R(N) N
1
d \ Rg(N) N

1
d. L

For r > 0, consider the strip

U(r) :={z ¥ C : |Re z| < r}. (4.32)

Generally, we will restrict our attention to small magnetic fields, that is
h ¥ U0 :=U(h0) where h0 will be taken small enough. For instance, h0 < 1

16

so that the results on the restricted phases can be used in U0.
We define the domain of analyticity for a contour:

UC :=U(Rg(V(C))) 5 U0, (4.33)

and for a chain X:

UX := 3
C ¥ X

UC. (4.34)

That is, UX=UC
max, where Cmax ¥ X has the largest interior. Notice that the

domains UC, UX depend on h. Set V(X) :=V(Cmax)=max{V(C): C ¥ X}.
The main result of this section is the following.

Proposition 4.1. Let h ¥ (0, 1), E > 0, c > 0 small enough. There
exists b1=b1(h, E) such that for all b \ b1, the following holds. For each
chain X, h W w+(X) is analytic in UX. Moreover,

||w+(X)||UX
< w0(X), > d

dh
w+(X)>

UX

< w0(X), (4.35)

where w0(X) is defined via the weights l0(P̂) and r0(C) given in
(4.37)–(4.38) hereafter, and satisfies (4.21).

Before starting the proof of Proposition 4.1, we give explicitly the
weights l0(P̂) and r0(C). These weights are defined such that they can be
used throughout the section, also when bounding the first derivative of
w+(X). As will be seen, the non-trivial part of w+(C) will be bounded by:

>G−(int C;+sC )
G+(int C; − sC )

>
UC

[ ebh ||C||e
2
3 |C|. (4.36)

Using (4.11), ||r1(C)||U0
[ e−b ||C||e2bh0 |C|e

1
3 |C|. This suggests to define the

weight r0(C) in the following way:

r0(C) :=D1b |C|
d

d − 1 e−(1 − h) b ||C||e2bh0 |C|e |C|. (4.37)
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The term D1b |C|
d

d − 1 has been added to take into account other contribu-
tions, especially when studying the first derivative. For clusters we get,
using the definition of l+(P̂) and (3.54),

||l+(P̂)||H+
[ ||w+(P̂)||H+

e ||w+(P̂)||H+

[ |w0(P̂)| e |w0(P̂)| [ |w0(P̂)| eEr < D2 |w0(P̂)| — l0(P̂). (4.38)

The numerical constants D1, D2 are assumed to be fixed and sufficiently
large, in order to cover all the cases that will appear in the sequel.

Lemma 4.3. Let h ¥ (0, 1), c > 0, and E > 0 be small enough.
Assume 2h0 [ 1

2 (1 − h) r (r is the Peierls constant). There exists b1=
b1(h, E) such that for all b \ b1, the hypothesis (4.20) of Lemma 4.1 are
satisfied.

Proof. Define a new weight for polymers (see (3.46)):

w2 0(P) :=w0(P) e (c+E(2d+1)) |P|. (4.39)

If b is large enough, we can proceed as in (3.54) and get

C
P̂ ¦ 0

l0(P̂) e (c+E(2d+1)) |P̂|=D2 C
P̂ ¦ 0

|w0(P̂)| e (c+E(2d+1)) |P̂|

[ D2 C
P̂ ¦ 0

|w̃0(P̂)| [
E

2
. (4.40)

This shows the first inequality of (4.20). For the second, we use the Peierls
condition ||C|| \ r |C| (Proposition 2.2). This gives

C
C: [C]l ¦ 0

r0(C) e (c+E) |[C]l| [ D1b C
C: [C]l ¦ 0

|C|
d

d − 1 e−(1 − h) br |C|e2bh0 |C|e |C|e (c+E) |[C]l|

[ D1b C
C: [C]l ¦ 0

|C|
d

d − 1 e−1
2 (1 − h) br |C|e |C|e (c+E) |[C]l|.

Since |[C]l | [ 3d |C|, a standard Peierls estimate allows to bound this sum
by E

2 as soon as b is large enough. L

Until now we have denoted by Er=Er(b) the small function appearing
in the study of the restricted phases. Similarly, we denote by Ec=Ec(b) the
small function appearing in the study of chains. These two parameters are
assumed to have a common bound max{Er, Ec} [ E, which is small.
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Consider the weight w+(C) given (4.12). We can use the linking pro-
cedure for the partition functions G ±(int C; + sC), yielding

w+(C)=r1(C)
e−bhV(C)Zr(P

−
int C(+sC)) X(X−

int C(+sC))
e+bhV(C)Zr(P

+
int C(−sC)) X(X+

int C(−sC))
. (4.41)

Proof of Proposition 4.1. The proof will be done by induction.
We say a contour C is of class n if V(C)=n. A chain is of class n if
V(X)=n.

Consider a contour C of small class (say, of class smaller than ld).
Then the last ratio appearing in (4.41) equals 1. We bound w+(C) at
h=x+iy ¥ UC. First,

|e−2bhV(C)| [ e2b |x| V(C) [ e2bRg(V(C)) V(C) [ e2bR(V(C)) V(C) [ ehb ||C||, (4.42)

where we used the definition of the isoperimetric constants K( · ) given in
(2.43). Then, write

Zr(P
−
int C(+sC))h

Zr(P
+
int C(−sC))h

=
Zr(P

−
int C(+sC))h

Zr(P
−
int C(+sC))iy

Zr(P
−
int C(+sC))iy

Zr(P
+
int C(−sC))iy

Zr(P
+
int C(−sC))iy

Zr(P
+
int C(−sC))h

.

(4.43)

The middle term has modulus 1 by symmetry (see (3.32)). The two other
terms can be treated as follows:

:log
Zr(P

−
int C(+sC))h

Zr(P
−
int C(+sC))iy

:=: Fx

0
ds

d
ds

log Zr(P
−
int C(+sC))s+iy

: [ |x| ErV(C).
(4.44)

We used Theorem 3.1. Proceeding as in (4.42), we get

>Zr(P
−
int C(+sC))

Zr(P
+
int C(−sC))

>
UC

[ ehEr ||C|| [ e
1
3 |C|, (4.45)

when b is large enough. Altogether this gives

||w+(C)||UC
[ ||r1(C)||UC

ehb ||C||e
1
3 |C| [ e−(1 − h) b ||C||e2bh0 |C|e2 1

3 |C| < r0(C). (4.46)

Since ||l+(P̂)||U0
< l0(P̂), we have shown the first inequality of (4.35) for

chains of small class. For the derivative, a Cauchy estimate (any disc
centered at h ¥ U0 with radius 1

16 is contained in H+) gives

> d
dh

l+(P̂)>
U0

[ 16 ||l+(P̂)||H+
. (4.47)
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For contours,

d
dh

w+(C)=w+(C)
d
dh

log w+(C)

=w+(C) 1 − b
d
dh

HC(s[C]) − b |C|+
d
dh

E+
C − 2bV(C)

+
d
dh

log
Zr(P

−
int C(+sC))

Zr(P
+
int C(−sC))

2 .

Using V(C) [ |C|
d

d − 1 (this is a consequence of Lemma 2.10) and

> d
dh

log
Zr(P

−
int C(+sC))

Zr(P
+
int C(−sC))

>
UC

[ 2ErV(C), (4.48)

this gives the upper bound

> d
dh

w+(C)>
UC

[ 6b |C|
d

d − 1 ||w+(C)||UC
, (4.49)

which implies, as can be seen easily, that

> d
dh

w+(X)>
UX

< w0(X). (4.50)

With Lemma 4.1, this shows the proposition for chains of small class.
Suppose it has been shown for chains of class [ n. By this induction
hypothesis, (4.21) and Lemma 1.1, a cluster expansion can be used for the
partition functions containing chains. Let X be a chain of class n+1, and
consider C ¥ X. The treatment of the restricted phases is the same, and we
must study the ratio

X(X−
int C(+sC))h

X(X+
int C(−sC))h

=
X(X−

int C(+sC))h

X(X−
int C(+sC))iy

X(X−
int C(+sC))iy

X(X+
int C(−sC))iy

X(X+
int C(−sC))iy

X(X+
int C(−sC))h

.

(4.51)

Again the middle term has modulus 1 and the rest is treated using the
induction hypothesis.

:log
X(X−

int C(+sC))h

X(X−
int C(+sC))iy

:=:Fx

0
ds

d
ds

log X(X−
int C(+sC))s+iy

: [ |x| EcV(C).
(4.52)
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This implies

>X(X−
int C(+sC))

X(X+
int C(−sC))

>
UC

[ ehEc ||C|| [ e
1
3 |C|. (4.53)

For the weight of C, we thus have (compare with (4.46)):

||w+(C)||UC
[ e−(1 − h) b ||C||e2bh0 |C|e3 1

3 |C| < r0(C). (4.54)

For the derivative, use again the induction hypothesis, and bound

> d
dh

log
X(X−

int C(+sC))
X(X+

int C(−sC))
>

UC

[ 2EcV(C). (4.55)

It is easy to check that (4.49) still holds which, in turn, implies (4.50). This
shows the proposition. L

4.4. Pure Phases

In the last section we gave for each chain X a domain UX in which the
weight w+(X) behaves analytically. The size of the domain UX shrinks to
{Re h=0} when the size of the largest contour of X increases. In the
present section we show that the weights w+(X) can actually be controlled
when 0 < Re h < h+ where h+ is fixed, independently of the size of X. This
treatment is standard and was first introduced by Zahradník. (23)

We consider only chains of type +, the case − being similar by
symmetry. Define

U+ :={z ¥ C : 0 < Re h < h+}, (4.56)

where 0 < h+ [ min { 1
16 , r

2} is fixed (r is the Peierls constant). In Section 5,
domains will have to be made optimal, with h close to 1, but here we
choose h :=1

2 . The main result of this section is the following

Proposition 4.2. Let E, c > 0 be small enough. There exists b2=b2(E)
such that for all b \ b2, the following holds. For each chain X of type +,
h W w+(X) is analytic in U+, and

||w+(X)||U+
[ w0(X), (4.57)

where w0(X) satisfies (4.21).

Proof. Since U+ … H+, clusters P̂ and restricted phases are under
control. For each C, we use the representation (4.12) (rather than (4.41)).
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The main ingredient of the proof is the following lemma, whose proof is
standard and can be found, e.g., in refs. 8 or 23 (with minor modifications
due to the fact that we are working with analytic restricted phases rather
than ground states).

Lemma 4.4. Let b be large enough. Then for each contour C of
type +, we have G+(int C; − sC) ] 0 on U+ and

> G−(int C;+sC)
G+(int C; − sC)

>
U+

[ e
2
3 |C|. (4.58)

The proof of Proposition 4.2 finishes by using Lemma 4.1. L

5. DERIVATIVES OF THE PRESSURE

In this section we prove Theorem 1.3, adapting the mechanism used by
S.N. Isakov for the Ising model. Although estimates of Theorem 1.3 hold
for the pressure density pc, we will always work in a finite volume L, and
obtain bounds on the derivatives of the pressure that are uniform in the
volume. As in the preceding section, we assume c ¥ (0, c0) is fixed.

We consider a box L=[ − M, +M]d 5 Zd, with M large, chosen so
that L ¥ C (l). Outside L we fix the spins to the value +1, i.e., we consider
the set W+

L , defined in (4.2) and the associated partition function Z+(L)
defined in (4.1). The finite volume pressure p+

c, L is defined by

p+
c, L :=

1
b |L|

log Z+(L). (5.1)

Clearly, this function equals the pressure density of (1.16) in the thermo-
dynamic limit. Consider the set C+(L) of all possible external contours of
type + associated to the set W+

L . That is, each contour of C+(L) appears in
at least one configuration sL ¥ W+

L . Remember that V(C)=|int C|, where
int C denotes the union of all components of Cc with label − . The family
C+(L) can be totally ordered, with an order relation denoted Q , such that
V(CŒ) [ V(C) when CŒ Q C. When C is not the smallest contour we denote
its predecessor (w.r.t. Q ) by i(C).

For a given external contour C ¥ C+(L), consider the set

W+
L (C) :={sL ¥ W+

L : CŒ Q C for all external contours CŒ of sL+L
c},
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and define the partition function

G+
C (L) := C

sL ¥ W
+
L (C)

exp( − bHL(sL+L
c)). (5.2)

When C is the largest contour then clearly G+
C (L)=Z+(L) and when C is

the smallest contour, we define G+
i(C)(L) :=Z+

r (L). We also introduce the
following set in which the presence of C is forced:

W+
L [C] :={sL ¥ W+

L : CŒ Q C for all external contours CŒ of sL+L
c

and C is a contour of sL+L
c}. (5.3)

The partition function G+
[C](L) is defined as (5.2), with W+

L [C] in place of
W+

L (C). We have the following fundamental identity:

G+
C (L)=G+

i(C)(L)+G+
[C](L). (5.4)

A crucial idea of Isakov is to consider the following identity.

Z+(L)=Z+
r (L) D

C ¥ C
+(L)

G+
C (L)

G+
i(C)(L)

. (5.5)

Then, the logarithm is written as a finite sum:

log Z+(L)=log Z+
r (L)+ C

C ¥ C
+(L)

u+
L (C), (5.6)

where

u+
L (C) :=log

G+
C (L)

G+
i(C)(L)

. (5.7)

Using (5.4) we can write u+
L (C)=log(1+j+

L (C)), where

j+
L (C) :=

G+
[C](L)

G+
i(C)(L)

. (5.8)

Non-analyticity of the pressure is examined by studying high order deriva-
tives of the functions j+

L (C) at h=0, using Cauchy’s formula

j+
L (C) (k)(0)=

k!
2pi

F
C

j+
L (C)(z)

zk+1 dz. (5.9)
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Fig. 6. The decomposition (5.10) of the partition function G+
[C](L).

To obtain bounds on j+
L (C) (k)(0), we exponentiate j+

L (C) and use a sta-
tionary phase analysis to estimate the integral. The contour C will be
chosen in a k-dependent way. If the domain UC ¦ 0 in which j+

L (C) is ana-
lytic is too small, then no information (not even the sign!) can be given
about j+

L (C) (k)(0).
For a while, consider the structure of the partition function G+

[C](L).
We write L=extL C 2 C 2 int C, where extL C :=ext C 5 L. By construc-
tion, extL C and int C are at distance at least l > 2R. We will therefore
consider extL C and int C as independent systems (see Fig. 6). The sums
over configurations on extL C and int C can be done separately, yielding

G+
[C](L)=r(C) G+

i(C)(extL C;+L
csC) G− (int C; sC). (5.10)

All the contours of these partition functions are at distance larger than l
from C, and have an interior smaller than V(C). The point is that we
control these functions for h ¥ UC, where UC … C is a domain that depends
only on the volume of C.

The program for the rest of the section is the following.
In Section 5.1 we show that j+

L (C) can be exponentiated, using the results
of Section 4. We then use a stationary phase analysis and obtain upper and
lower bounds on some derivatives of j+

L (C) and u+
L (C) at h=0. In Section

5.2 we fix k and take the box L large enough. For a class of contours called
k-large and thin, the kth derivative of u+

L (C) can be estimated from below,
using the results of Section 5.1. This gives a lower bound on p+(k)

c, L (0).
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In Section 5.3 we show that for p+
c, L, the operations limL and ( · ) (k), P (0)

commute, leading to the proof of our main results.

5.1. Study of the Functions j+
L(C)

The proof of the following lemma requires the main results of Sections 3
and 4. After that, the proof of non-analyticity of the pressure will essen-
tially follow the argument of Isakov (see refs. 8, 10, and 11).

Lemma 5.1. Let h ¥ (0, 1), b large enough. Then the following
holds. For all contour C ¥ C+(L) with V(C) ] 0 there exists a map
h W g+

L (C)(h) analytic in the strip UC, such that for all h ¥ UC, j+
L (C) can

be exponentiated:

j+
L (C)=exp( − b ||C|| − 2bhV(C)+2bV(C) g+

L (C)). (5.11)

Moreover, we have the following local estimate

2bV(C) |g+
L (C)(0)| [ d1(b) b ||C||, (5.12)

and a uniform bound on the first derivative

> d
dh

g+
L (C)>

UC

[ d2(b)+2
|C|

V(C)
. (5.13)

The functions di are such that limb q . di=0.

Proof. Consider G+
[C](L). We have seen how to re-sum over config-

urations on extL C and int C. We write

j+
L (C)=r(C)

G+
i(C)(extL C;+L

csC) G+(int C; − sC)
G+

i(C)(L)
G−(int C;+sC)
G+(int C; − sC)

. (5.14)

All the volume contributions coming from the first quotient will be shown
to vanish. The partition functions G+

i(C)(extL C;+L
csC) and G ±(int C; + sC)

are of the type (4.5). We can therefore apply the linking procedure and
obtain a representation of the form (4.18) for each of them:

G+
i(C)(extL C;+L

csC)=ebh |extLC|Zr(P
+
extLC) X(X+

extLC), (5.15)

G ±(int C; + sC)=e ± bhV(C)Zr(P
±
int C) X(X ±

int C), (5.16)
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where we omitted, in the notation, to mention that the families of polymers
and chains always depend on the boundary conditions specified by +L

c and
sC. Moreover, the family X+

extL C contains chains X that satisfy V(X) [

V(C). In the same way:

G+
i(C)(L)=ebh |L|Zr(P

+
L ) X(X+

L ), (5.17)

where the families P+
L and X+

L depend only on the boundary condition+L
c.

Using the definition of r(C), it is easy to see that j+
L (C) has the form

(5.11), where g+
L (C) is defined by

2bV(C) g+
L (C) := − b C

i ¥ C

u((sC)i) − bh |C|+log Qr+log Qc, (5.18)

where u(si)=−hsi, and the quotients Qr, Qc are defined by

Qr(h) :=
Zr(P

+
extL C) Zr(P

+
int C)

Zr(P
+
L )

Zr(P
−
int C)

Zr(P
+
int C)

, (5.19)

Qc(h) :=
X(X+

extL C) X(X+
int C)

X(X+
L )

X(X−
int C)

X(X+
int C)

. (5.20)

Since all the families of chains involved contain contours with an interior
smaller than C, h W g+

L (C) is analytic in the strip UC (by Proposition 4.1).
Rearranging the terms of the cluster expansions for Qr leads to

log Qr=log
Zr(P

−
int C)

Zr(P
+
int C)

+ C
P̂ ¥ P̂

+
extL C

P̂ 5 [C]R ] ”

w+(P̂)

+ C
P̂ ¥ P̂

+
int C

P̂ 5 [C]R ] ”

w+(P̂) − C
P̂ ¥ P̂

+
L

P̂ 5 [C]R ] ”

w+(P̂).

Notice that the volume contributions from extL C cancelled, and that the
three sums are boundary terms. By symmetry, the quotient equals 1 at
h=0, and so

|log Qr(0)| [ 3Er |[C]R |. (5.21)

For the derivative, using (3.56) gives

> d
dh

log Qr
>

H̃+

[ 2ErV(C)+3Er |[C]R |. (5.22)

Non-Analyticity and the van der Waals Limit 719



The same computations can be done for Qc. Clusters of chains are denoted X̂.
The contributions from extL C also cancel. Indeed, consider the difference

C
X̂ ¥ X̂

+
extLC

w+(X̂) − C
X̂ ¥ X̂

+
L

w+(X̂). (5.23)

Using Lemma 2.5, there exists for all X̂1 ¥ X̂+
extLC with d(X̂1, C) > R,

a cluster X̂2 ¥ X̂+
L , X̂2 5 extL C ] ”, d(X̂2, C) > R, such that w+(X̂1)=

w+(X̂2). We are thus left with

log Qc=log
X(X−

int C)
X(X+

int C)
+ C

X̂ ¥ X̂
+
extLC

X̂ 5 [C]R ] ”

w+(X̂)

+ C
X̂ ¥ X̂

+
int C

X̂ 5 [C]R ] ”

w+(X̂) − C
X̂ ¥ X̂

+
L

X̂ 5 [C]R ] ”

w+(X̂).

Using symmetry,

|log Qc(0)| [ 3Ec |[C]R |. (5.24)

For the derivative, a similar treatment gives

> d
dh

log Qc
>

UC

[ 2EcV(C)+3Ec |[C]R |. (5.25)

Estimates (5.21) and (5.24) yield

2bV(C) |g+
L (C)(0)| [ 3(Er+Ec) |[C]R | [ d1(b) b ||C||, (5.26)

where d1(b) :=3d+1b−1(Er+Ee) r−1 (r is the Peierls constant). We get (5.13)
by setting d2(b) :=b−1(Er+Ee). L

We are now in position of computing derivatives of the functions
j+

L (C). The main ingredient is the following theorem, which appeared in
ref. 11. The proof can be obtained by following the Appendix of ref. 10,
which is nothing but a stationary phase analysis applied to the Cauchy
integral giving the kth derivative at z=0 of a function of the type e−cz+bf(z).

Theorem 5.1. Let r > 0, F(z)=exp(−cz+bf(z)) where 1 [ b [ c,
and f is analytic in a disc {|z| < r}, taking real values on the real line, with
a uniformly bounded derivative:

sup
|z| < r

|fŒ(z)| [ A <
1
25

. (5.27)
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There exists k0=k0(A) such that the following holds: define k+=
r(c − 2b `A). For all integers k ¥ [k0, k+] there exists rk ¥ (0, r) and ck > 0
satisfying

k
c+bA

[ rk [
k

c − bA
,

3
10

1

`2pcrk

< ck <
1

`crk

, (5.28)

such that

F (k)(0)=
k!

2pi
F

|z|=rk

F(z)
zk+1 dz=k!

ck

(−rk)k F(−rk). (5.29)

In particular, (−1)k F (k)(0) > 0. Moreover, if f satisfies the local condition

bf(0) [ − arc, (5.30)

with a ¥ (log 2, 1), then for all k ¥ [k0, k+] and A sufficiently small,

(log(1+F)) (k) (0)=(1+a · e−1
2 zk) F (k) (0), (5.31)

where a is a bounded function of k, c, b and z=z(a) > 0.

In Lemma 5.1, we have put j+
L (C) in the form e−cz+bf(z). In order to

satisfy (5.27), we must introduce a distinction among the contours.
Consider the function d2(b) of (5.13).

Definition 5.1. A contour C ¥ C+(L) is thin if |C| [
d2(b)

2 V(C), and
fat if it is not thin.

Now, any thin contour C satisfies, when b is large enough,

> d
dh

g+
L (C)>

UC

[ 2 d2(b) — A(b) <
1

25
. (5.32)

Lemma 5.2. There exists k0 such that when b is sufficiently large,
the following holds. For all thin contour C, define

k+(C) :=2bV(C) Rg(V(C))(1 − 2 `A). (5.33)

Then for all integer k ¥ [k0, k+(C)], we have

(−1)k u+
L (C) (k) (0) \ 1

10(2bV(C) D− )k e−(1+d1(b)) ||C||, (5.34)

(−1)k u+
L (C) (k) (0) [ 20(2bV(C) D+)k e−(1 − d1(b)) ||C||, (5.35)

where limb Q . D± =1.
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Proof. Let C be a thin contour. Consider j+
L (C) in its exponentiated

form (5.11). We apply Theorem 5.1 with c=b=2bV(C), f=g+
L (C)

− 1
2

||C||
V(C) , r=Rg(V(C)), and A=A(b). (5.32) guarantees (5.27). There exist

rk=rk(C) and ck=ck(C) such that

(−1)k j+
L (C) (k) (0)=k!

ck

(rk)k j+
L (C)(−rk). (5.36)

Using the analyticity of g+
L (C) in UC, we have with (5.28)

j+
L (C)(−rk)=e−b ||C||ecrkecg+

L (C)(0)ec(g+
L (C)(−rk) − g+

L (C)(0))

\ e−b ||C||e
k

1+Ae−d1b ||C||e− A
1 − A k

=e−(1+d1) b ||C||eke− 2A

1 − A2 k.

Using Stirling’s formula and the estimates for rk, ck, we get

(−1)k j+
L (C) (k) (0) \ 1

5 (2bV(C) D− )k e−(1+d1) b ||C||, (5.37)

where

D− (b)=(1 − A) e− 2A

1 − A2. (5.38)

Using (5.12) we can satisfy (5.30):

bf(0)=2bV(C) g+
L (C)(0) − b ||C|| [ − (1 − d1) b ||C||

[ − (1 − d1) 2bV(C) Rg(V(C)) (5.39)

=−(1 − d1) rc. (5.40)

In (5.39) we used

||C|| \
1

K(V(C))
V(C)

d
d − 1 \ 2V(C)

h

2K(V(C)) V(C)
1
d
\ 2V(C) Rg(V(C)).

We can thus use (5.31) once b is large enough. This gives the lower bound
(5.34). The upper bound is obtained similarly. L

5.2. Derivatives in a Finite Volume

In this section, we fix k large enough. When a thin contour satisfies
[k0, k+(C)] ¦ k then u+

L (C) (k)(0) can be estimated with Lemma 5.2. To
characterize this class of contours, we introduce a k-dependent notion of
size.
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Definition 5.2. Let k ¥ N, EŒ > 0 small enough. A contour C is
k-large if V(C) \ V0(k) where

V0(k) :=1 K(.)(1+EŒ)

hb(1 − 2 `A)
k2

d
d − 1

, (5.41)

where K(.) was defined in Lemma 2.9. C is k-small if V(C) < V0(k).

Let N0(EŒ) be such that for all N \ N0(EŒ) (see Lemma 4.2),

1

(1+EŒ)

h

2K(.) N
1
d

[ Rg(N) [
h

2K(.) N
1
d

. (5.42)

Let k− =k− (EŒ, c) be such that when k \ k− then V0(k) \ N0(EŒ). This defi-
nition implies that when k \ k− , we have for all k-large contour C

k+(C)=2bV(C)(1 − 2 `A) Rg(V(C)) \
hb(1 − 2 `A)

K(.)(1+EŒ)
V(C)

d − 1
d \ k.

(5.43)

That is, the kth derivative of a k-large thin contour can be studied with
Lemma 5.2. The dependence of k− on c comes from the bound
K(.) \ c− c. We therefore have limc s 0 k− =+..

Proposition 5.1. Let h be close to 1, b large enough. There exist a
constant C1 > 0 and an unbounded increasing sequence of integers k1, k2,...
such that for large N, we have whenever L is sufficiently large,

(−1)kN

|L|
dkN

dhkN
C

C ¥ C
+(L)

u+
L (C)|h=0 \ (C1K(.)

d
d − 1 b− 1

d − 1)kN kN!
d

d − 1. (5.44)

Proof. FixE > 0 smallandconsiderthesequence(CN)N \ 1 ofLemma2.9.
We have limN Q .V(CN)=+. and when N is large enough,

(1 − E) K(.) [
V(CN)

d − 1
d

||CN ||
[ (1+E) K(.). (5.45)

The sequence (kN)N \ 1 is defined such that the contribution from the
contour CN to p+(kN)

c, L (0) is close to maximal. Let

kN :=#d − 1
d

b ||CN ||$. (5.46)
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Since limN Q . V(CN)=+., we have limN Q . kN=+.. From now on we
consider N large enough so that (5.45) and (5.48) hold and kN \

max{k0, k− }. When considering the kN-th derivative, we use the following
decomposition:

C
C ¥ C

+(L)

= C
C ¥ C

+(L)
kN − large, thin

+ C
C ¥ C

+(L)
kN − small, thin

+ C
C ¥ C

+(L)
fat

(5.47)

We show that the dominant term comes from CN, which belongs to the first
sum, and that the two other sums are negligible. To see that CN appears in
the first sum, we first show that CN is kN-large. Indeed, if h is close to 1 and
E, EŒ, A(b) are small,

V0(kN) [ 1K(.)(1+EŒ)

h(1 − 2 `A )

d − 1
d

||CN ||2
d

d − 1

[ 1 1

h(1 − 2 `A)

1+EŒ

1 − E

d − 1
d

2
d

d − 1

V(CN) [ V(CN).

Then we show that CN is thin:

|CN |
V(CN)

[
1
r

||CN ||
V(CN)

[
1

rK(.)(1 − E)
1

V0(kN)
1
d
[

1
2

d2(b). (5.48)

Finally, we assume L is large enough in order to contain at least a |L|
translates of CN, a > 0. Then we apply Lemma 5.2 to u+

L (CN). Using (5.45),

V(CN)kN e−(1+d1) b ||CN||

\ ((1 − E) K(.) ||CN ||)
d

d − 1 kN e−(1+d1) b ||CN||

\ 1 (1 − E) K(.)
d

d − 1
1
b

kN
2

d
d − 1 kN

e−(1+d1) d
d − 1 (kN+1)

\ c(kN) K(.)
d

d − 1 kNb− d
d − 1 kN 5 d

d − 1
(1 − E) e−d16

d
d − 1 kN

kN!
d

d − 1, (5.49)

where c(kN) \ C3k−1
2

N and we used Stirling’s formula. Since

(−1)kN u+
L (C) (kN) (0) \ 0 (5.50)
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for all kN-large thin contour, we can bound the first sum from below using
only the contributions coming from the translates of CN. We get

(−1)kN

|L|
dkN

dhkN
C

C ¥ C
+(L)

kN − large, thin

u+
L (C)|h=0

\
c(kN)

20
2kNK(.)

d
d − 1 kN b− 1

d − 1 kN 5 d
d − 1

(1 − E) e−d1D−
6

d
d − 1 kN

kN!
d

d − 1. (5.51)

Consider now a kN-small thin contour, i.e., Rg(V(C)) \ Rg(V0(kN)). Using
the Cauchy formula with a disc of radius Rg(V0(kN)) centered at h=0,

|u+
L (C) (kN)(0)| [ kN! 1 1

Rg(V0(kN))
2kN

||u+
L (C)||UC

. (5.52)

Lemma 5.3. Setting a1=a1(h, b) :=r−1(1 − h(1+A(b)) − d1(b)). If
b is large enough, we have a1 > 0 and the bound

||u+
L (C)||UC

[
e−ba1 |C|

1 − e−ba1 |C| . (5.53)

Proof. Using (5.11), (5.12), and (5.32),

||j+
L (C)||UC

[ sup
h ¥ UC

e−b(1 − d1) ||C||e2b(1+A) |Re h| V(C) [ e−a1b |C| < 1, (5.54)

where we used the definition of the radius of analyticity:

sup
h ¥ UC

|h| V(C) [ Rg(V(C)) V(C) [ R(V(C)) V(C) [
h

2
||C||. (5.55)

The proof finishes by using the Taylor expansion of log(1+x). L

A standard Peierls estimate implies, when b is large, the existence of a
number C4 such that

C
C ¥ C

+(L)

e−ba1|C| [ C4 |L|. (5.56)
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Using the Stirling formula, it easy to see that kN !k
1

d − 1 kN
N [ kN!

d
d − 1e

1
d − 1 kN. The

contribution from the kN-small contours is then bounded by

1
|L|

: dkN

dhkN
C

C ¥ C
+(L)

kN − small, thin

u+
L (C) :

h=0

[ C52kNK(.)
d

d − 1 kNb− 1
d − 1 kN 5e

1
d − 1 11+EŒ

h
2

d
d − 1 1 1

1 − 2 `A
2

1
d − 16kN

kN!
d

d − 1.

(5.57)

Since d
d − 1 > e

1
d, the comparison of the square brackets of (5.57) with those

of (5.51) shows that if h is close to 1, if E, EŒ are small, and if b is large
enough, then the contribution from the kN-small contours is negligible in
comparison to the kN-large ones.

We are then left with the contribution of the fat contours. We can use
a Cauchy bound

: dk

dhk u+
L (C):

h=0
[ k! 1 1

Rg(V(C))
2k

||u+
L (C)||UC

[ k! 12K(1)
h

2k

V(C)
k
d

e−ba1 |C|

1 − e−ba1 |C|

[ k! 12K(1)
h

1 2
d2

2
1
d2k

|C|
k
d

e−ba1 |C|

1 − e−ba1 |C|.

Then a Peierls estimate leads to

C
C ¥ C

+(L)

|C|
k
d e−a1b |C| [ |L| C

L \ 1
L

k
de−aŒ1bL [ |L| (a −

1b)−k
d C 1k

d
+12 , (5.58)

where C(x) is the Gamma-function. Using the Stirling formula, it is then
easy to show that the contribution from the fat contours is bounded by

1
|L|

: dk

dhk C
C ¥ C

+(L)
fat

u+
L (C) :

h=0
[ (K(1) b− 1

dD(k))k k!
d

d − 1, (5.59)

where limk Q . D(k)=0. The fat contours can thus always be ignored. This
finishes the proof of Proposition 5.1. L
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With (3.57), we get the lower bound, for a large enough box L,

|p+(kN)
c, L (0)| \ (C1K(.)

d
d − 1 b− 1

d − 1)kN kN!
d

d − 1 − CkN
r kN! (5.60)

\ (C− c
d

d − 1b− 1
d − 1)kN kN!

d
d − 1 − CkN

r kN!. (5.61)

We used the lower bound K(.) \ c− c from Lemma 2.9. Notice that we
could extract the contribution of the translates of CN to p+(kN)

c, L (0) without
knowing its explicit shape. This is where our formulation of the isoperime-
tric problems differs from the one of Isakov. Notice also that the lower
bound (5.61) shows how non-analyticity is detected in finite volumes.

5.3. Thermodynamic Limit; Proofs of Theorems 1.2 and 1.3.

To extend the bounds we have on p+(kN)
c, L (0) to the infinite volume

limit, we first show that in the strip U+ the derivatives of the pressure are
uniformly bounded.

Lemma 5.4. Let b be large enough. There exists C+ > 0 such that
for all k \ 2,

sup
L

||p+(k)
c, L ||U+

[ (C+c
d

d − 1b− 1
d − 1)k k!

d
d − 1+Ck

r k!. (5.62)

Proof. Like in Section 4.4, we can fix h :=1
2 . The term Ck

r k! comes
from (3.57). Consider u+

L (C) and the representation (5.14) of j+
L (C). From

Lemma 5.1, j+
L (C) is analytic in UC. From Proposition 4.2 and Lemma

4.4, it is also analytic in U+, i.e., in U+ 2 UC. Proceeding like in the proof of
Lemma 5.1, we get

>G+
i(C)(extL C; sC) G+(int C; − sC)

G+
i(C)(L)

>
U+

[ sup
h ¥ U+

e−bRe h |C|e3(Er+Ec) |[C]R|

=e3(Er+Ec) |[C]R|.

Assume 3d+1(Er+Ec) [ 1
3 . Using (4.58),

||j+
L (C)||U+

[ e−b ||C||ebh+|C|e |C| [ e−a2b |C| < 1. (5.63)

Notice that unlike in (5.54), a2 in independent of h. This implies that u+
L (C)

is also analytic in U+ 2 UC. Set a3=min{a1, a2}. Using a disc of radius
Rg(V(C)) around each h ¥ U+, we have
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||u+
L (C) (k)||U+

[ k! 1 1
Rg(V(C))

2k

||u+
L (C)||U+ 2 UC

[ k! 12K(1)
h

2k

V(C)
k
d

e−ba3 |C|

1 − e−ba3 |C|

[ k!12K(1)
hl

1
d − 1

2k

|C|
k

d − 1
e−ba3 |C|

1 − e−ba3 |C| .

We used the isoperimetric inequality of Lemma 2.10. Remember that
K(1) [ c+c (Lemma 2.9), and that l=nc−1. The proof finishes like for the
upper bound on fat contours. L

Corollary 5.1. For all hŒ ¥ U+ 2 {Re h=0} and for all k ¥ N,

p (k), P

c (hŒ)= lim
L q Zd

p+(k)
c, L (hŒ)=lim

h s hŒ

p (k)
c (h). (5.64)

Proof. We show (5.64) for k=1. By definition,

p (1), P

c (hŒ)=lim
d s 0

pc(hŒ+d) − pc(hŒ)
d

=lim
d s 0

lim
L q Zd

p+
c, L(hŒ+d) − p+

c, L(hŒ)
d

=lim
d s 0

lim
L q Zd

1p+(1)
c, L (hŒ)+

1
2!

p+(2)
c, L (h(d)) d2 ,

where limd s 0 h(d)=hŒ. The following lemma will allow to permute the
limits limd s 0 and limL q Zd.

Lemma 5.5. Let, for all N ¥ N, d > 0, bN(d)=aN+cN(d), such that
|cN(d)| [ Dd uniformly in N, and limN Q .bN(d)=b(d) exists. Then
limN Q . aN and limd s 0 b(d) exist and are equal.

Proof. We first show that limd s 0 b(d) exists. Let (dk) be any
sequence dk > 0 such that limk Q . dk=0. Then we have

|b(dk) − b(dkŒ)|=| lim
N Q .

(cN(dk) − cN(dkŒ))| [ D(dk+dkŒ), (5.65)
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and so limk Q . b(dk) exists. Fix E > 0. There exists NE, d such that if N \ NE, d

then |bN(d) − b(d)| [ E. We then have

b(d) − E − Dd [ lim infN Q . aN [ lim supN Q . aN [ b(d)+E+Dd, (5.66)

which finishes the proof, once we take E Q 0, d Q 0. L

Using the fact that the second derivative is uniformly bounded on U+

(Lemma 5.4), this shows the first equality in (5.64). For the second, we only
need to consider the case where hŒ=0.

p (1), P

c (0)=lim
d s 0

pc(d) − pc(0)
d

=lim
d s 0

rpc(d) − pc
1d

2
2

d
+

pc
1d

2
2− pc(0)

d

s

=1 lim
d s 0

1
2

p (1)
c (h(d))2+

1
2

p (1), P

c (0),

where h(d) ¥ [d
2 , d] and limd s 0h(d)=0. This shows

p (1), P

c (0)=lim
d s 0

p (1)
c (h(d)), (5.67)

which extends easily to any sequence h s 0, since derivatives of any order
are uniformly bounded on U+. L

We can then complete the proofs of our main results.

Proof of Theorem1.3. The bounds on p (k)
c, L(0) of (5.61) and Lemma 5.4

extend to the thermodynamic limit using Corollary 5.1. L

Proof of Theorem 1.2. Using the symmetry pc(h)=pc(−h), we can
write, for m \ 0,

fc(m)=sup
h \ 0

(hm − pc(h)). (5.68)

By the Theorem of Lee and Yang, h W pc(h) and m W mc(h) :=p(1)
c (h) are

analytic in {Re h > 0}. If mg :=p(1), P

c (0), then for all m ¥ (mg, 1),

fc(m)=h(m) m − pc(h(m)), (5.69)
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where hc(m) is the unique solution of the equation m=mc(h). The GKS
inequality (see ref. 9) allows to obtain, for all h ] 0,

p (2)
c (h) \ b(1 − tanh(b(h+1))2) > 0, lim

h s 0
p (2)

c (h) > 0. (5.70)

Since p (2)
c (h) ] 0 for all h > 0, the biholomorphic mapping theorem12

12 Let g: D Q C be an analytic function, z0 ¥ D be a point such that gŒ(z0) ] 0. Then there
exists a domain V … D containing z0, such that the following holds: VŒ=g(V) is a domain,
and the map g: V Q VŒ has an inverse g−1: VŒ Q V which is analytic, and which satisfies, for
all w ¥ VŒ, g−1

Œ(w)=(gŒ(g−1(w)))−1. The proof of this result can be found in ref. 21,
pp. 281–282.

implies that m W hc(m) is analytic in a complex neighbourhood of each
m ¥ (mg, 1). So fc, which is a composition of analytic maps, is analytic on
(mg, 1).

We now show that fc has no analytic continuation at mg. Assume this
is wrong. We compute

h (1)
c (mg)= lim

m s mg
h (1)

c (m)=lim
h s 0

m (1)
c (h)−1=lim

h s 0
p (2)

c (h)−1 ] 0. (5.71)

We used the fact that p (2), P

c (0) is bounded at h=0. Again, (5.71) implies
that the inverse of hc=hc(m) can be inverted in a neighbourhood of mg

and that the inverse, mc=mc(h), is analytic at h=0. This is a contradiction
with Theorem 1.3. L

6. CONCLUSION

Our analysis has lead to the following representation of the pressure
for h \ 0:

pc(h)=p+
r, c(h)+s+

c (h), (6.1)

where p+
r, c is the restricted pressure. As we have seen in Section 3, p+

r, c,
which describes a homogeneous phase with positive magnetization, behaves
analytically at h=0. On the other side, s+

c contains the contributions from
droplets (contours) of any possible sizes, and is responsible for the non-
analytic behaviour of the pressure at h=0. Non-analyticity can be detected
only in the very high order derivatives of s+

c , although s+
c contributes

essentially nothing to the pressure when c is small. Indeed, s+
c can be

expressed as a sum over clusters of chains, and each chain contains at least
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one contour. Since the length |C| of a contour is bounded below by the size
of a cube C (l), we have

||s+
c ||U+

[ ae−bbc
− d

, (6.2)

where a, b > 0 are constants.
For the pressure, the Lebowitz–Penrose Theorem takes the form (see

ref. 19):

p0(h) :=lim
c s 0

pc(h)= sup
m ¥ [ − 1, +1]

(hm − fMF(m)), (6.3)

where the mean field free energy fMF was defined in (1.4). The bound (6.2)
implies, for h \ 0,

p0(h)=lim
c s 0

p+
r, c(h)=sup

m \ 0
(hm − fMF(m)). (6.4)

From this last expression, the analytic continuation of the pressure, in the
van der Waals limit, at h=0, can be understood easily: for h > 0,
hm − fMF(m) has a unique global maxima at mg(h, b) > 0. When h < 0 this
maxima is only local, but provides the analytic continuation at h=0. The
identity (6.4) shows that the constraint on the local magnetization, in p+

r, c,
has the effect of always selecting the maxima mg(h, b), which is global
when h > 0 and local when h < 0. When c > 0, this scenario breaks down:
droplets are well defined, and they are all stable at h=0, creating arbi-
trarily large fractions of the − phase. As we saw, this gives a contribution
k!

d
d − 1 to the kth derivative of the pressure.

APPENDIX A: CLUSTER EXPANSION

Consider a countable set D whose elements are called animals, and
denoted c ¥ D. To each animal c is associated a finite subset of Zd, called
the support of c. Usually we also denote the support by c. In the cases we
consider, the support is always an R-connected set. Assume we are given a
symmetric binary relation on D, denoted ’ . We say two animals c, cŒ are
compatible if c ’ cŒ. When c and cŒ are not compatible we write c ¾ cŒ. We
assume that the following condition is necessary to characterize incompa-
tibility: for each each animal c, there exists a set b(c) … Zd such that if
c ¾ cŒ, then b(c) 5 b(cŒ) ] ”.
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To each animal c ¥ D we associate a complex weight w(c) ¥ C. The
partition function is defined by

X(D) := C
{c} … D
compat.

D
c ¥ {c}

w(c), (A.1)

where the sum extends over all sub-families of D of pairwise compatible
animals (we assume this sum exists, which is the case in every concrete
situation). When {c}=”, we define the product over c as equal to 1. We
are interested in studying the logarithm of the partition function. To this
end, we define the family D̂ of all maps ĉ: DQ {0, 1, 2,...}. The support of
ĉ is the set {c ¥ D : ĉ(c) \ 1}. Usually we also denote the support of ĉ by ĉ.
We will also write ĉ ¦ x if the support of ĉ contains an animal whose
support contains x. A map ĉ ¥ D̂ is a cluster of animals if its support
can’t be decomposed into a disjoint union S1 2 S2 such that each c1 ¥ S1 is
compatible with each c2 ¥ S2. Formally, the logarithm of the partition
function has the form (see, e.g., ref. 18)

log X(D)= C
ĉ ¥ D̂

w(ĉ), (A.2)

where the weight of ĉ equals

w(ĉ)=aT(ĉ) D
c ¥ D

w(c) ĉ(c). (A.3)

The functions aT(ĉ) are purely combinatorial factors. They equal zero if ĉ

is not a cluster. The following is the technical lemma that gives explicit
conditions for the convergence of the development (A.2). The proof is
standard and can be adapted from. (18)

Lemma 1.1. Let w0(c) be a positive weight such that

sup
x ¥ Zd

C
c: b(c) ¦ x

w0(c) e |b(c)| [ E, (A.4)

where 0 < E < 1. Define w0(ĉ) as in (A.3) with w0(c) in place of w(c). Then
there exists a function g(E), limE Q 0g(E)=0 such that

sup
x ¥ Zd

C
ĉ ¦ x

|w0(ĉ)| [ g(E). (A.5)
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Typically, in the cases we consider, the weights are maps z W w(c; z),
analytic in a domain A … C, and there exists a positive weight w0(c) such
that ||w(c; · )||A [ w0(c) for all c. Lemma 1.1 thus implies that the series
(A.2) is normally convergent on A. This guarantees analyticity of the
logarithm of X(D), by a standard Theorem of Weierstrass (see, e.g.,
ref. 21).
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